Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
7d7d035e
Commit
7d7d035e
authored
7 years ago
by
masahi
Committed by
Tianqi Chen
7 years ago
Browse files
Options
Downloads
Patches
Plain Diff
allow fallback path to non imagenet workloads (#886)
parent
28bb0f68
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
topi/python/topi/x86/conv2d.py
+50
-44
50 additions, 44 deletions
topi/python/topi/x86/conv2d.py
with
50 additions
and
44 deletions
topi/python/topi/x86/conv2d.py
+
50
−
44
View file @
7d7d035e
...
...
@@ -66,8 +66,8 @@ def _get_schedule_conv(wkl):
@conv2d.register
(
"
cpu
"
)
def
_declaration_conv
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
):
target
=
tvm
.
target
.
current_target
(
allow_none
=
False
)
if
'
avx
'
in
str
(
target
)
and
layout
==
'
NCHW
'
:
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
out_dtype
)
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
out_dtype
)
if
wkl
in
_WORKLOADS
and
'
avx
'
in
str
(
target
)
and
layout
==
'
NCHW
'
:
sch
=
_get_schedule
(
wkl
)
return
_AVX_SCH_TO_DECL_FUNC
[
type
(
sch
)](
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
)
elif
layout
==
'
NCHW
'
:
...
...
@@ -86,6 +86,30 @@ def schedule_conv2d(outs):
s
=
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
target
=
tvm
.
target
.
current_target
(
allow_none
=
False
)
def
default_schedule
(
op
):
"""
NCHW conv2d schedule for non imagenet workloads
"""
conv
=
op
.
output
(
0
)
kernel
=
op
.
input_tensors
[
1
]
data
=
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"
pad
"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
n_pad
,
c_pad
,
h_pad
,
w_pad
=
data_pad
.
op
.
axis
pad_fused
=
s
[
data_pad
].
fuse
(
n_pad
,
c_pad
)
s
[
data_pad
].
parallel
(
pad_fused
)
C
=
conv
n
,
c
,
h
,
w
=
C
.
op
.
axis
rc
,
ry
,
rx
=
C
.
op
.
reduce_axis
fused
=
s
[
C
].
fuse
(
n
,
c
)
s
[
C
].
parallel
(
fused
)
wo
,
wi
=
s
[
C
].
split
(
w
,
factor
=
16
)
s
[
C
].
reorder
(
fused
,
rc
,
h
,
wo
,
ry
,
rx
,
wi
)
# move rc to outer loop
s
[
C
].
unroll
(
rx
)
s
[
C
].
unroll
(
ry
)
s
[
C
].
vectorize
(
wi
)
def
traverse
(
op
):
"""
Traverse operators from computation graph
"""
# inline all one-to-one-mapping operators except the last stage (output)
...
...
@@ -104,49 +128,31 @@ def schedule_conv2d(outs):
if
'
conv2d_nchw
'
in
op
.
tag
:
if
'
avx
'
in
str
(
target
):
output
=
op
.
output
(
0
)
conv_out
=
op
.
input_tensors
[
0
]
kernel_vec
=
conv_out
.
op
.
input_tensors
[
1
]
kernel
=
kernel_vec
.
op
.
input_tensors
[
0
]
data_vec
=
conv_out
.
op
.
input_tensors
[
0
]
data
=
data_vec
.
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"
pad
"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
padding
=
infer_pad
(
data
,
data_pad
)
if
data_pad
is
None
:
stride
=
infer_stride
(
data
,
kernel
,
output
)
else
:
stride
=
infer_stride
(
data_pad
,
kernel
,
output
)
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
output
.
dtype
)
sch
=
_get_schedule
(
wkl
)
_AVX_SCH_TO_SCH_FUNC
[
type
(
sch
)](
s
,
data
,
data_pad
,
data_vec
,
kernel
,
kernel_vec
,
conv_out
,
output
,
outs
[
0
])
try
:
output
=
op
.
output
(
0
)
conv_out
=
op
.
input_tensors
[
0
]
kernel_vec
=
conv_out
.
op
.
input_tensors
[
1
]
kernel
=
kernel_vec
.
op
.
input_tensors
[
0
]
data_vec
=
conv_out
.
op
.
input_tensors
[
0
]
data
=
data_vec
.
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"
pad
"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
padding
=
infer_pad
(
data
,
data_pad
)
if
data_pad
is
None
:
stride
=
infer_stride
(
data
,
kernel
,
output
)
else
:
stride
=
infer_stride
(
data_pad
,
kernel
,
output
)
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
output
.
dtype
)
sch
=
_get_schedule
(
wkl
)
_AVX_SCH_TO_SCH_FUNC
[
type
(
sch
)](
s
,
data
,
data_pad
,
data_vec
,
kernel
,
kernel_vec
,
conv_out
,
output
,
outs
[
0
])
except
IndexError
:
default_schedule
(
op
)
else
:
conv
=
op
.
output
(
0
)
kernel
=
op
.
input_tensors
[
1
]
data
=
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"
pad
"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
n_pad
,
c_pad
,
h_pad
,
w_pad
=
data_pad
.
op
.
axis
pad_fused
=
s
[
data_pad
].
fuse
(
n_pad
,
c_pad
)
s
[
data_pad
].
parallel
(
pad_fused
)
C
=
conv
n
,
c
,
h
,
w
=
C
.
op
.
axis
rc
,
ry
,
rx
=
C
.
op
.
reduce_axis
fused
=
s
[
C
].
fuse
(
n
,
c
)
s
[
C
].
parallel
(
fused
)
wo
,
wi
=
s
[
C
].
split
(
w
,
factor
=
16
)
s
[
C
].
reorder
(
fused
,
rc
,
h
,
wo
,
ry
,
rx
,
wi
)
# move rc to outer loop
s
[
C
].
unroll
(
rx
)
s
[
C
].
unroll
(
ry
)
s
[
C
].
vectorize
(
wi
)
default_schedule
(
op
)
traverse
(
outs
[
0
].
op
)
return
s
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment