Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
7ea06e6e
Commit
7ea06e6e
authored
6 years ago
by
Siju
Committed by
Tianqi Chen
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
[ONNX]onnx gather bug fix (#1543)
parent
60da4705
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
nnvm/python/nnvm/frontend/onnx.py
+3
-7
3 additions, 7 deletions
nnvm/python/nnvm/frontend/onnx.py
nnvm/tests/python/frontend/onnx/test_forward.py
+101
-85
101 additions, 85 deletions
nnvm/tests/python/frontend/onnx/test_forward.py
with
104 additions
and
92 deletions
nnvm/python/nnvm/frontend/onnx.py
+
3
−
7
View file @
7ea06e6e
...
...
@@ -489,15 +489,11 @@ class Slice(OnnxOpConverter):
class
Gather
(
OnnxOpConverter
):
"""
Operator converter for Gather.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
axis
=
attr
[
'
axis
'
]
indices
=
np
.
array
(
attr
[
'
indices
'
],
dtype
=
'
int32
'
)
name
=
'
gather_indices
'
gather_indices
=
_sym
.
Variable
(
name
=
name
,
init
=
indices
)
params
[
name
]
=
indices
return
_sym
.
take
(
inputs
[
0
],
gather_indices
,
axis
=
axis
)
axis
=
attr
.
get
(
'
axis
'
,
0
)
return
AttrCvt
(
op_name
=
'
take
'
,
extras
=
{
'
axis
'
:
axis
})(
inputs
,
attr
)
class
LRN
(
OnnxOpConverter
):
"""
Operator converter for Local Response Normalization.
...
...
This diff is collapsed.
Click to expand it.
nnvm/tests/python/frontend/onnx/test_forward.py
+
101
−
85
View file @
7ea06e6e
...
...
@@ -8,21 +8,50 @@ import onnx
from
model_zoo
import
super_resolution
,
squeezenet1_1
,
lenet
,
resnet18_1_0
from
onnx
import
helper
,
TensorProto
def
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_shape
,
dtype
=
'
float32
'
):
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
].
name
shape_dict
=
{
input_name
:
x
.
shape
}
dtype_dict
=
{
input_name
:
dtype
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
def
get_tvm_output
(
graph_def
,
input_data
,
target
,
ctx
,
output_shape
,
output_dtype
=
'
float32
'
):
"""
Generic function to execute and get tvm output
"""
sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
graph_def
)
target
=
'
llvm
'
if
isinstance
(
input_data
,
list
):
input_names
=
{}
shape_dict
=
{}
dtype_dict
=
{}
for
i
,
_
in
enumerate
(
input_data
):
input_names
[
i
]
=
graph_def
.
graph
.
input
[
i
].
name
shape_dict
[
input_names
[
i
]]
=
input_data
[
i
].
shape
dtype_dict
[
input_names
[
i
]]
=
input_data
[
i
].
dtype
else
:
input_names
=
graph_def
.
graph
.
input
[
0
].
name
shape_dict
=
{
input_names
:
input_data
.
shape
}
dtype_dict
=
{
input_names
:
input_data
.
dtype
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
sym
,
target
,
shape_dict
,
dtype
=
dtype_dict
,
params
=
params
)
ctx
=
tvm
.
cpu
(
0
)
from
tvm.contrib
import
graph_runtime
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
x
.
astype
(
dtype
)))
if
isinstance
(
input_data
,
list
):
for
i
,
e
in
enumerate
(
input_names
):
m
.
set_input
(
input_names
[
i
],
tvm
.
nd
.
array
(
input_data
[
i
].
astype
(
input_data
[
i
].
dtype
)))
else
:
m
.
set_input
(
input_names
,
tvm
.
nd
.
array
(
input_data
.
astype
(
input_data
.
dtype
)))
m
.
set_input
(
**
params
)
# execute
m
.
run
()
# get outputs
out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
dtype
))
return
out
.
asnumpy
()
if
isinstance
(
output_shape
,
list
)
and
isinstance
(
output_dtype
,
list
):
tvm_output_list
=
[]
for
i
,
s
in
enumerate
(
output_shape
):
tvm_output
=
m
.
get_output
(
i
,
tvm
.
nd
.
empty
((
s
),
output_dtype
[
i
]))
tvm_output_list
.
append
(
tvm_output
.
asnumpy
())
return
tvm_output_list
else
:
tvm_output
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
((
output_shape
),
output_dtype
))
return
tvm_output
.
asnumpy
()
def
get_caffe2_output
(
model
,
x
,
dtype
=
'
float32
'
):
import
caffe2.python.onnx.backend
...
...
@@ -70,13 +99,15 @@ def test_reshape():
graph
=
helper
.
make_graph
([
ref_node
,
reshape_node
],
"
reshape_test
"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
reshape_test
'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'
int32
'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
ref_shape
,
'
float32
'
)
np
.
testing
.
assert_allclose
(
ref_shape
,
tvm_out
.
shape
)
...
...
@@ -98,13 +129,15 @@ def test_reshape_like():
graph
=
helper
.
make_graph
([
ref_node
,
copy_node
,
reshape_node
],
"
reshape_like_test
"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
reshape_like_test
'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'
float32
'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
ref_shape
,
'
float32
'
)
np
.
testing
.
assert_allclose
(
ref_shape
,
tvm_out
.
shape
)
...
...
@@ -122,31 +155,18 @@ def _test_power_iteration(x_shape, y_shape):
graph
=
helper
.
make_graph
([
res
],
'
power_test
'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
x
"
,
TensorProto
.
FLOAT
,
list
(
x_shape
)),
helper
.
make_tensor_value_info
(
"
y
"
,
TensorProto
.
FLOAT
,
list
(
y_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
np_res
.
shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
x
"
,
TensorProto
.
FLOAT
,
list
(
x_shape
)),
helper
.
make_tensor_value_info
(
"
y
"
,
TensorProto
.
FLOAT
,
list
(
y_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
np_res
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
power_test
'
)
for
target
,
ctx
in
ctx_list
():
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
].
name
input_name1
=
model
.
graph
.
input
[
1
].
name
shape_dict
=
{
input_name
:
x
.
shape
,
input_name1
:
y
.
shape
}
dtype_dict
=
{
input_name
:
x
.
dtype
,
input_name1
:
y
.
dtype
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
x
))
m
.
set_input
(
input_name1
,
tvm
.
nd
.
array
(
y
))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
np_res
.
shape
,
np_res
.
dtype
))
np
.
testing
.
assert_allclose
(
np_res
,
tvm_out
.
asnumpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
tvm_out
=
get_tvm_output
(
model
,
[
x
,
y
],
target
,
ctx
,
np_res
.
shape
)
np
.
testing
.
assert_allclose
(
np_res
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_power
():
_test_power_iteration
((
1
,
3
),
(
1
))
...
...
@@ -160,13 +180,15 @@ def test_squeeze():
graph
=
helper
.
make_graph
([
y
],
'
squeeze_test
'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
squeeze_test
'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'
float32
'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_shape
,
'
float32
'
)
np
.
testing
.
assert_allclose
(
out_shape
,
tvm_out
.
shape
)
...
...
@@ -179,44 +201,47 @@ def test_unsqueeze():
graph
=
helper
.
make_graph
([
y
],
'
squeeze_test
'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
squeeze_test
'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'
float32
'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_shape
,
'
float32
'
)
np
.
testing
.
assert_allclose
(
out_shape
,
tvm_out
.
shape
)
def
verify_gather
(
in_shape
,
indices
,
axis
=
0
):
indices_src
=
np
.
array
(
indices
,
dtype
=
"
int32
"
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
out_np
=
np
.
take
(
x
,
indices_src
,
axis
=
axis
)
def
verify_gather
(
in_shape
,
indices
,
axis
,
dtype
):
x
=
np
.
random
.
uniform
(
size
=
in_shape
).
astype
(
dtype
)
indices
=
np
.
array
(
indices
,
dtype
=
"
int32
"
)
out_np
=
np
.
take
(
x
,
indices
,
axis
=
axis
)
y
=
helper
.
make_node
(
"
Gather
"
,
[
'
in
'
]
,
[
'
out
'
],
indices
=
indices
,
axis
=
axis
)
y
=
helper
.
make_node
(
"
Gather
"
,
[
'
in
'
,
'
indices
'
],
[
'
out
'
]
,
axis
=
axis
)
graph
=
helper
.
make_graph
([
y
],
'
gather_test
'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
TensorProto
.
FLOAT
,
list
(
in_shape
)),
helper
.
make_tensor_value_info
(
"
indices
"
,
TensorProto
.
INT32
,
list
(
indices
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
out_np
.
shape
))])
TensorProto
.
FLOAT
,
list
(
out_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
gather_test
'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_np
.
shape
,
'
float32
'
)
np
.
testing
.
assert_allclose
(
out_np
,
tvm_out
)
tvm_out
=
get_tvm_output
(
model
,
[
x
,
indices
],
target
,
ctx
,
out_np
.
shape
)
np
.
testing
.
assert_allclose
(
out_np
,
tvm_out
)
def
test_gather
():
verify_gather
((
4
,),
[
1
])
verify_gather
((
4
,),
[
0
,
1
,
2
,
3
])
verify_gather
((
4
,
2
),
[
1
],
1
)
verify_gather
((
4
,
3
,
5
,
6
),
[
2
,
1
,
0
,
0
],
-
2
)
verify_gather
((
4
,),
[
1
],
0
,
'
int32
'
)
verify_gather
((
1
,
4
),
[
0
],
0
,
'
int32
'
)
verify_gather
((
4
,),
[[[
1
,
0
],[
0
,
1
]]],
0
,
'
float32
'
)
verify_gather
((
2
,
2
),
[[[
1
,
0
],[
0
,
1
]]],
1
,
'
int32
'
)
verify_gather
((
3
,
3
,
3
),
[[[
1
,
0
]]],
-
1
,
'
int32
'
)
verify_gather
((
4
,
3
,
5
,
6
),
[[
2
,
1
,
0
,
0
]],
0
,
'
float32
'
)
def
_test_slice_iteration
(
indata
,
outdata
,
starts
,
ends
,
axes
=
None
):
if
axes
:
...
...
@@ -226,8 +251,10 @@ def _test_slice_iteration(indata, outdata, starts, ends, axes=None):
graph
=
helper
.
make_graph
([
y
],
'
slice_test
'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
slice_test
'
)
...
...
@@ -251,8 +278,10 @@ def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs):
graph
=
helper
.
make_graph
([
y
],
opname
+
'
_test
'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
in
"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
opname
+
'
_test
'
)
...
...
@@ -278,40 +307,27 @@ def test_clip():
def
test_matmul
():
a_shape
=
(
4
,
3
)
b_shape
=
(
3
,
4
)
out_shape
=
(
4
,
4
)
a_array
=
np
.
random
.
uniform
(
size
=
a_shape
).
astype
(
'
float32
'
)
b_array
=
np
.
random
.
uniform
(
size
=
b_shape
).
astype
(
'
float32
'
)
out_np
=
np
.
matmul
(
a_array
,
b_array
)
mul_node
=
helper
.
make_node
(
"
MatMul
"
,
[
"
a
"
,
"
b
"
],
[
"
out
"
])
graph
=
helper
.
make_graph
([
mul_node
],
"
matmul_test
"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
a
"
,
TensorProto
.
FLOAT
,
list
(
a_shape
)),
helper
.
make_tensor_value_info
(
"
b
"
,
TensorProto
.
FLOAT
,
list
(
b_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"
a
"
,
TensorProto
.
FLOAT
,
list
(
a_shape
)),
helper
.
make_tensor_value_info
(
"
b
"
,
TensorProto
.
FLOAT
,
list
(
b_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
out_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
matmul_test
'
)
for
target
,
ctx
in
ctx_list
():
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
].
name
input_name1
=
model
.
graph
.
input
[
1
].
name
shape_dict
=
{
input_name
:
a_array
.
shape
,
input_name1
:
b_array
.
shape
}
dtype_dict
=
{
input_name
:
'
float32
'
,
input_name1
:
'
float32
'
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
a_array
.
astype
(
'
float32
'
)))
m
.
set_input
(
input_name1
,
tvm
.
nd
.
array
(
b_array
.
astype
(
'
float32
'
)))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
'
float32
'
))
np
.
testing
.
assert_allclose
(
np
.
matmul
(
a_array
,
b_array
),
tvm_out
.
asnumpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
tvm_out
=
get_tvm_output
(
model
,
[
a_array
,
b_array
],
target
,
ctx
,
out_np
.
shape
)
np
.
testing
.
assert_allclose
(
out_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
verify_lrn
(
shape
,
nsize
,
dtype
,
alpha
=
None
,
beta
=
None
,
bias
=
None
):
in_array
=
np
.
random
.
uniform
(
size
=
shape
).
astype
(
dtype
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment