Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
8f5d3bd2
Commit
8f5d3bd2
authored
6 years ago
by
Yuwei Hu
Committed by
Tianqi Chen
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
[Keras] fix weight shape in dilated conv (#1715)
parent
a6724b6e
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
nnvm/python/nnvm/frontend/keras.py
+8
-6
8 additions, 6 deletions
nnvm/python/nnvm/frontend/keras.py
nnvm/tests/python/frontend/keras/test_forward.py
+22
-25
22 additions, 25 deletions
nnvm/tests/python/frontend/keras/test_forward.py
with
30 additions
and
31 deletions
nnvm/python/nnvm/frontend/keras.py
+
8
−
6
View file @
8f5d3bd2
...
...
@@ -58,8 +58,10 @@ def _convert_activation(insym, keras_layer, _):
return
_get_elu
(
insym
,
alpha
)
elif
act_type
==
'
selu
'
:
# Alpha, Gamma values, obtained from https://arxiv.org/abs/1706.02515
alpha
=
keras_layer
.
alpha
if
hasattr
(
keras_layer
,
"
alpha
"
)
else
1.6732
gamma
=
keras_layer
.
gamma
if
hasattr
(
keras_layer
,
"
gamma
"
)
else
1.0507
alpha
=
keras_layer
.
alpha
if
hasattr
(
keras_layer
,
"
alpha
"
)
\
else
1.6732632423543772848170429916717
gamma
=
keras_layer
.
gamma
if
hasattr
(
keras_layer
,
"
gamma
"
)
\
else
1.0507009873554804934193349852946
return
gamma
*
_get_elu
(
insym
,
alpha
)
elif
act_type
==
'
relu6
'
:
return
_sym
.
clip
(
insym
,
a_min
=
0
,
a_max
=
6
)
...
...
@@ -155,8 +157,8 @@ def _convert_convolution(insym, keras_layer, symtab):
dilation
=
[
keras_layer
.
dilation_rate
[
0
],
keras_layer
.
dilation_rate
[
1
]]
else
:
dilation
=
[
keras_layer
.
dilation_rate
,
keras_layer
.
dilation_rate
]
kernel_h
=
(
kernel_h
-
1
)
*
dilation
[
0
]
+
1
kernel_w
=
(
kernel_w
-
1
)
*
dilation
[
1
]
+
1
dilated_
kernel_h
=
(
kernel_h
-
1
)
*
dilation
[
0
]
+
1
dilated_
kernel_w
=
(
kernel_w
-
1
)
*
dilation
[
1
]
+
1
stride_h
,
stride_w
=
keras_layer
.
strides
params
=
{
'
weight
'
:
symtab
.
new_const
(
weight
),
'
kernel_size
'
:
[
kernel_h
,
kernel_w
],
...
...
@@ -178,8 +180,8 @@ def _convert_convolution(insym, keras_layer, symtab):
elif
keras_layer
.
padding
==
'
same
'
:
in_h
=
keras_layer
.
input_shape
[
1
]
in_w
=
keras_layer
.
input_shape
[
2
]
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
kernel_h
,
stride_h
)
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
kernel_w
,
stride_w
)
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
dilated_
kernel_h
,
stride_h
)
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
dilated_
kernel_w
,
stride_w
)
if
pad_t
==
pad_b
and
pad_l
==
pad_r
:
params
[
'
padding
'
]
=
(
pad_t
,
pad_l
)
else
:
...
...
This diff is collapsed.
Click to expand it.
nnvm/tests/python/frontend/keras/test_forward.py
+
22
−
25
View file @
8f5d3bd2
...
...
@@ -73,10 +73,10 @@ def test_forward_elemwise_add():
keras_model
=
keras
.
models
.
Model
(
data
,
y
)
verify_keras_frontend
(
keras_model
)
def
test_forward_dense
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
MaxPooling2D
(
pool_size
=
(
2
,
2
))(
data
)
x
=
keras
.
layers
.
Flatten
()(
x
)
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
1
))
x
=
keras
.
layers
.
Flatten
()(
data
)
x
=
keras
.
layers
.
Dropout
(
0.5
)(
x
)
x
=
keras
.
layers
.
Dense
(
10
,
activation
=
'
relu
'
,
kernel_initializer
=
'
uniform
'
)(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
...
...
@@ -84,7 +84,7 @@ def test_forward_dense():
def
test_forward_pool
():
data
=
keras
.
layers
.
Input
(
shape
=
(
2
,
2
,
1
))
data
=
keras
.
layers
.
Input
(
shape
=
(
3
2
,
3
2
,
1
))
# maxpool
x
=
keras
.
layers
.
MaxPooling2D
((
3
,
3
),
strides
=
(
1
,
1
),
padding
=
'
same
'
)(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
...
...
@@ -95,25 +95,20 @@ def test_forward_pool():
verify_keras_frontend
(
keras_model
)
def
test_forward_transpose_conv
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Conv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
strides
=
(
2
,
2
),
padding
=
'
same
'
)(
data
)
x
=
keras
.
layers
.
DepthwiseConv2D
(
kernel_size
=
(
3
,
3
),
padding
=
'
same
'
)(
x
)
x
=
keras
.
layers
.
Conv2DTranspose
(
filters
=
64
,
kernel_size
=
(
3
,
3
),
padding
=
'
valid
'
)(
x
)
x
=
keras
.
layers
.
GlobalMaxPooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
def
test_forward_separable_conv
():
def
test_forward_conv
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
SeparableConv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'
same
'
,
activation
=
'
relu
'
)(
data
)
x
=
keras
.
layers
.
BatchNormalization
(
scale
=
True
,
center
=
False
,
beta_initializer
=
'
uniform
'
,
gamma_initializer
=
'
uniform
'
)(
x
)
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
conv_funcs
=
[
keras
.
layers
.
Conv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
strides
=
(
2
,
2
),
padding
=
'
same
'
),
keras
.
layers
.
Conv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
dilation_rate
=
(
2
,
2
),
padding
=
'
same
'
),
keras
.
layers
.
DepthwiseConv2D
(
kernel_size
=
(
3
,
3
),
padding
=
'
same
'
),
keras
.
layers
.
Conv2DTranspose
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'
valid
'
),
keras
.
layers
.
SeparableConv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'
same
'
)]
for
conv_func
in
conv_funcs
:
x
=
conv_func
(
data
)
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
def
test_forward_upsample
():
...
...
@@ -123,6 +118,7 @@ def test_forward_upsample():
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
def
test_forward_reshape
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Reshape
(
target_shape
=
(
32
,
32
,
3
))(
data
)
...
...
@@ -168,6 +164,7 @@ def test_forward_mobilenet():
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
verify_keras_frontend
(
keras_model
)
def
test_forward_activations
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
weights
=
np
.
random
.
rand
(
1
,
32
,
32
,
3
)
...
...
@@ -187,10 +184,11 @@ def test_forward_activations():
keras
.
layers
.
Activation
(
'
linear
'
)]
for
act_func
in
act_funcs
:
x
=
act_func
(
data
)
x
=
keras
.
layers
.
Global
Max
Pooling2D
()(
x
)
x
=
keras
.
layers
.
Global
Average
Pooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
def
test_forward_multi_inputs
():
data1
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data2
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
...
...
@@ -239,8 +237,7 @@ if __name__ == '__main__':
test_forward_activations
()
test_forward_dense
()
test_forward_pool
()
test_forward_transpose_conv
()
test_forward_separable_conv
()
test_forward_conv
()
test_forward_upsample
()
test_forward_reshape
()
test_forward_crop
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment