Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
a9e0567d
Commit
a9e0567d
authored
6 years ago
by
Siju
Committed by
Yizhi Liu
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
[FRONTEND][ONNX]HardSigmoid, min, max, mean ops support (#1645)
parent
a03c60ba
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
nnvm/python/nnvm/frontend/onnx.py
+51
-5
51 additions, 5 deletions
nnvm/python/nnvm/frontend/onnx.py
nnvm/tests/python/frontend/onnx/test_forward.py
+125
-0
125 additions, 0 deletions
nnvm/tests/python/frontend/onnx/test_forward.py
with
176 additions
and
5 deletions
nnvm/python/nnvm/frontend/onnx.py
+
51
−
5
View file @
a9e0567d
...
...
@@ -529,6 +529,53 @@ class LRN(OnnxOpConverter):
return
_sym
.
lrn
(
inputs
[
0
],
size
=
nsize
,
axis
=
axis
,
alpha
=
alpha
,
beta
=
beta
,
bias
=
bias
)
class
Maximum
(
OnnxOpConverter
):
"""
Operator converter for Maximum.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
not
isinstance
(
inputs
,
list
)
or
len
(
inputs
)
<
2
:
raise
ValueError
(
"
Expect minimum 2 inputs
"
)
_max
=
inputs
[
0
]
for
i
in
range
(
1
,
len
(
inputs
)):
_max
=
AttrCvt
(
op_name
=
'
broadcast_max
'
)([
_max
,
inputs
[
i
]],
{})
return
_max
class
Minimum
(
OnnxOpConverter
):
"""
Operator converter for Minimum.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
not
isinstance
(
inputs
,
list
)
or
len
(
inputs
)
<
2
:
raise
ValueError
(
"
Expect minimum 2 inputs
"
)
_min
=
inputs
[
0
]
for
i
in
range
(
1
,
len
(
inputs
)):
_min
=
AttrCvt
(
op_name
=
'
broadcast_min
'
)([
_min
,
inputs
[
i
]],
{})
return
_min
class
Mean
(
OnnxOpConverter
):
"""
Operator converter for Mean.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
not
isinstance
(
inputs
,
list
)
or
len
(
inputs
)
<
2
:
raise
ValueError
(
"
Expect minimum 2 inputs
"
)
count
=
len
(
inputs
)
_sum
=
inputs
[
0
]
for
i
in
range
(
1
,
count
):
_sum
=
AttrCvt
(
op_name
=
'
broadcast_add
'
)([
_sum
,
inputs
[
i
]],
{})
return
_sum
/
count
class
HardSigmoid
(
OnnxOpConverter
):
"""
Operator converter for HardSigmoid.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
alpha
=
attr
.
get
(
'
alpha
'
,
0.2
)
beta
=
attr
.
get
(
'
beta
'
,
0.5
)
transformX
=
(
inputs
[
0
]
*
alpha
)
+
beta
attr
=
{
'
a_min
'
:
0
,
'
a_max
'
:
1
}
return
AttrCvt
(
op_name
=
'
clip
'
)([
transformX
],
attr
)
# compatible operators that do NOT require any conversion.
_identity_list
=
[]
...
...
@@ -557,7 +604,6 @@ def _get_convert_map(opset):
# 'MeanVarianceNormalization'
# 'Crop'
# 'Embedding'
# 'Upsample'
'
Upsample
'
:
Upsample
.
get_converter
(
opset
),
'
SpatialBN
'
:
BatchNorm
.
get_converter
(
opset
),
...
...
@@ -591,11 +637,11 @@ def _get_convert_map(opset):
'
Pow
'
:
Renamer
(
'
broadcast_pow
'
),
'
PRelu
'
:
Prelu
.
get_converter
(
opset
),
'
Sigmoid
'
:
Renamer
(
'
sigmoid
'
),
#
'HardSigmoid'
#
'Max'
:
this is the elemwise maximum
#
'Min'
:
this is the elemwise minimum
'
HardSigmoid
'
:
HardSigmoid
.
get_converter
(
opset
),
'
Max
'
:
Maximum
.
get_converter
(
opset
),
'
Min
'
:
Minimum
.
get_converter
(
opset
),
'
Sum
'
:
Sum
.
get_converter
(
opset
),
#
'Mean'
'
Mean
'
:
Mean
.
get_converter
(
opset
),
'
Clip
'
:
AttrCvt
(
'
clip
'
,
transforms
=
{
'
min
'
:
'
a_min
'
,
'
max
'
:
'
a_max
'
}),
# softmax default axis is different in onnx
'
Softmax
'
:
AttrCvt
(
'
softmax
'
,
{
'
axis
'
:
(
'
axis
'
,
1
)}),
...
...
This diff is collapsed.
Click to expand it.
nnvm/tests/python/frontend/onnx/test_forward.py
+
125
−
0
View file @
a9e0567d
...
...
@@ -426,6 +426,127 @@ def test_upsample():
_test_upsample_nearest
()
_test_upsample_bilinear
()
def
verify_min
(
input_dim
):
dtype
=
'
float32
'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
a_np2
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
a_np3
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
b_np
=
np
.
min
((
a_np1
,
a_np2
,
a_np3
),
axis
=
0
)
min_node
=
helper
.
make_node
(
"
Min
"
,
[
"
a_np1
"
,
"
a_np2
"
,
"
a_np3
"
],
[
"
out
"
])
graph
=
helper
.
make_graph
([
min_node
],
"
Min_test
"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
a_np1
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"
a_np2
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"
a_np3
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
Min_test
'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
,
a_np2
,
a_np3
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_min
():
verify_min
((
1
,
3
,
20
,
20
))
verify_min
((
20
,
20
))
def
verify_max
(
input_dim
):
dtype
=
'
float32
'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
a_np2
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
a_np3
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
b_np
=
np
.
max
((
a_np1
,
a_np2
,
a_np3
),
axis
=
0
)
max_node
=
helper
.
make_node
(
"
Max
"
,
[
"
a_np1
"
,
"
a_np2
"
,
"
a_np3
"
],
[
"
out
"
])
graph
=
helper
.
make_graph
([
max_node
],
"
Max_test
"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
a_np1
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"
a_np2
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"
a_np3
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
Max_test
'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
,
a_np2
,
a_np3
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_max
():
verify_max
((
1
,
3
,
20
,
20
))
verify_max
((
20
,
20
))
def
verify_mean
(
input_dim
):
dtype
=
'
float32
'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
a_np2
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
a_np3
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
b_np
=
np
.
mean
((
a_np1
,
a_np2
,
a_np3
),
axis
=
0
)
mean_node
=
helper
.
make_node
(
"
Mean
"
,
[
"
a_np1
"
,
"
a_np2
"
,
"
a_np3
"
],
[
"
out
"
])
graph
=
helper
.
make_graph
([
mean_node
],
"
Mean_test
"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
a_np1
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"
a_np2
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"
a_np3
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
Mean_test
'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
,
a_np2
,
a_np3
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_mean
():
verify_mean
((
1
,
3
,
20
,
20
))
verify_mean
((
20
,
20
))
def
verify_hardsigmoid
(
input_dim
,
alpha
,
beta
):
dtype
=
'
float32
'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
).
astype
(
dtype
)
b_np
=
np
.
clip
(
a_np1
*
alpha
+
beta
,
0
,
1
)
hardsigmoid_node
=
helper
.
make_node
(
"
HardSigmoid
"
,
[
"
a_np1
"
],
[
"
out
"
],
alpha
=
alpha
,
beta
=
beta
)
graph
=
helper
.
make_graph
([
hardsigmoid_node
],
"
HardSigmoid_test
"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"
a_np1
"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"
out
"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'
HardSigmoid_test
'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_hardsigmoid
():
verify_hardsigmoid
((
1
,
3
,
20
,
20
),
0.5
,
0.6
)
verify_hardsigmoid
((
20
,
20
),
0.3
,
0.4
)
if
__name__
==
'
__main__
'
:
# verify_super_resolution_example()
...
...
@@ -445,3 +566,7 @@ if __name__ == '__main__':
test_gather
()
test_lrn
()
test_upsample
()
test_forward_min
()
test_forward_max
()
test_forward_mean
()
test_forward_hardsigmoid
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment