Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
Actris
Commits
0d22cb10
Commit
0d22cb10
authored
4 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Notation for binder_insert.
parent
bc055a22
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/logrel/environments.v
+4
-1
4 additions, 1 deletion
theories/logrel/environments.v
theories/logrel/term_typing_rules.v
+6
-7
6 additions, 7 deletions
theories/logrel/term_typing_rules.v
with
10 additions
and
8 deletions
theories/logrel/environments.v
+
4
−
1
View file @
0d22cb10
From
actris
.
logrel
Require
Export
term_types
.
From
iris
.
proofmode
Require
Import
tactics
.
Notation
"<![ b := x ]!>"
:=
(
binder_insert
b
x
%
lty
)
(
at
level
5
,
right
associativity
)
.
Definition
env_ltyped
{
Σ
}
(
Γ
:
gmap
string
(
ltty
Σ
))
(
vs
:
gmap
string
val
)
:
iProp
Σ
:=
([
∗
map
]
i
↦
A
∈
Γ
,
∃
v
,
⌜
vs
!!
i
=
Some
v
⌝
∗
ltty_car
A
v
)
%
I
.
...
...
@@ -32,7 +35,7 @@ Section env.
Lemma
env_ltyped_insert
Γ
vs
x
A
v
:
ltty_car
A
v
-∗
env_ltyped
Γ
vs
-∗
env_ltyped
(
binder_insert
x
A
Γ
)
(
binder_insert
x
v
vs
)
.
env_ltyped
(
<!
[
x
:=
A
]
!>
Γ
)
(
<!
[
x
:=
v
]
!>
vs
)
.
Proof
.
destruct
x
as
[|
x
]=>
/=
;
first
by
auto
.
iIntros
"HA HΓ"
.
...
...
This diff is collapsed.
Click to expand it.
theories/logrel/term_typing_rules.v
+
6
−
7
View file @
0d22cb10
...
...
@@ -72,7 +72,7 @@ Section properties.
Qed
.
Lemma
ltyped_lam
Γ
Γ'
x
e
A1
A2
:
(
binder_insert
x
A1
Γ
⊨
e
:
A2
⫤
Γ'
)
-∗
(
<!
[
x
:=
A1
]
!>
Γ
⊨
e
:
A2
⫤
Γ'
)
-∗
Γ
⊨
(
λ
:
x
,
e
)
:
A1
⊸
A2
⫤
∅.
Proof
.
iIntros
"#He"
(
vs
)
"!> HΓ /="
.
...
...
@@ -89,7 +89,7 @@ Section properties.
(* Typing rule for introducing copyable functions *)
Lemma
ltyped_rec
Γ
Γ'
Γ''
f
x
e
A1
A2
:
env_copy
Γ
Γ'
-∗
(
binder_insert
f
(
A1
→
A2
)
%
lty
(
binder_insert
x
A1
Γ'
)
⊨
e
:
A2
⫤
Γ''
)
-∗
(
<!
[
f
:=
A1
→
A2
]
!>
$
<!
[
x
:=
A1
]
!>
Γ'
⊨
e
:
A2
⫤
Γ''
)
-∗
Γ
⊨
(
rec
:
f
x
:=
e
)
:
A1
→
A2
⫤
∅.
Proof
.
iIntros
"#Hcopy #He"
.
iIntros
(
vs
)
"!> HΓ /="
.
iApply
wp_fupd
.
wp_pures
.
...
...
@@ -98,8 +98,7 @@ Section properties.
iModIntro
.
iSplitL
;
last
by
iApply
env_ltyped_empty
.
iLöb
as
"IH"
.
iIntros
(
v
)
"!> HA1"
.
wp_pures
.
set
(
r
:=
RecV
f
x
_)
.
iDestruct
(
"He"
$!
(
binder_insert
f
r
(
binder_insert
x
v
vs
))
with
"[HΓ HA1]"
)
as
"He'"
.
iDestruct
(
"He"
$!
(
<!
[
f
:=
r
]
!>
$
<!
[
x
:=
v
]
!>
vs
)
with
"[HΓ HA1]"
)
as
"He'"
.
{
iApply
(
env_ltyped_insert
with
"IH"
)
.
iApply
(
env_ltyped_insert
with
"HA1 HΓ"
)
.
}
iDestruct
(
wp_wand
_
_
_
_
(
ltty_car
A2
)
with
"He' []"
)
as
"He'"
.
...
...
@@ -112,7 +111,7 @@ Section properties.
Qed
.
Lemma
ltyped_let
Γ1
Γ2
Γ3
x
e1
e2
A1
A2
:
(
Γ1
⊨
e1
:
A1
⫤
Γ2
)
-∗
(
binder_insert
x
A1
Γ2
⊨
e2
:
A2
⫤
Γ3
)
-∗
(
Γ1
⊨
e1
:
A1
⫤
Γ2
)
-∗
(
<!
[
x
:=
A1
]
!>
Γ2
⊨
e2
:
A2
⫤
Γ3
)
-∗
Γ1
⊨
(
let
:
x
:=
e1
in
e2
)
:
A2
⫤
binder_delete
x
Γ3
.
Proof
.
iIntros
"#He1 #He2 !>"
.
iIntros
(
vs
)
"HΓ1"
=>
/=.
...
...
@@ -243,7 +242,7 @@ Section properties.
Lemma
ltyped_unpack
{
k
}
Γ1
Γ2
Γ3
(
x
:
string
)
e
(
C
:
lty
Σ
k
→
ltty
Σ
)
A
:
Γ1
!!
x
=
Some
(
lty_exist
C
)
→
(
∀
X
,
binder_insert
x
(
C
X
)
Γ1
⊨
e
:
A
⫤
Γ2
)
-∗
(
∀
X
,
<!
[
x
:=
C
X
]
!>
Γ1
⊨
e
:
A
⫤
Γ2
)
-∗
(
Γ1
⊨
e
:
A
⫤
Γ2
)
.
Proof
.
iIntros
(
Hx
)
"#He"
.
iIntros
(
vs
)
"!> HΓ"
.
...
...
@@ -443,7 +442,7 @@ Section properties.
Lemma
ltyped_recv_texist
{
kt
}
Γ1
Γ2
(
xc
:
string
)
(
x
:
binder
)
(
e
:
expr
)
(
A
:
ltys
Σ
kt
→
ltty
Σ
)
(
S
:
ltys
Σ
kt
→
lsty
Σ
)
(
B
:
ltty
Σ
)
:
(
∀
Ys
,
binder_insert
x
(
A
Ys
)
(
<
[
xc
:=(
chan
(
S
Ys
))
%
lty
]
>
Γ1
)
⊨
e
:
B
⫤
Γ2
)
-∗
<!
[
x
:=
A
Ys
]
!>
$
<
[
xc
:=(
chan
(
S
Ys
))
%
lty
]
>
Γ1
⊨
e
:
B
⫤
Γ2
)
-∗
<
[
xc
:=(
chan
(
<
??.
.
Xs
>
TY
A
Xs
;
S
Xs
))
%
lty
]
>
Γ1
⊨
(
let
:
x
:=
recv
xc
in
e
)
:
B
⫤
binder_delete
x
Γ2
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment