Skip to content
Snippets Groups Projects
Commit 0d22cb10 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Notation for binder_insert.

parent bc055a22
No related branches found
No related tags found
No related merge requests found
From actris.logrel Require Export term_types.
From iris.proofmode Require Import tactics.
Notation "<![ b := x ]!>" :=
(binder_insert b x%lty) (at level 5, right associativity).
Definition env_ltyped {Σ} (Γ : gmap string (ltty Σ))
(vs : gmap string val) : iProp Σ :=
([ map] i A Γ, v, vs !! i = Some v ltty_car A v)%I.
......@@ -32,7 +35,7 @@ Section env.
Lemma env_ltyped_insert Γ vs x A v :
ltty_car A v -∗
env_ltyped Γ vs -∗
env_ltyped (binder_insert x A Γ) (binder_insert x v vs).
env_ltyped (<![x:=A]!> Γ) (<![x:=v]!> vs).
Proof.
destruct x as [|x]=> /=; first by auto.
iIntros "HA HΓ".
......
......@@ -72,7 +72,7 @@ Section properties.
Qed.
Lemma ltyped_lam Γ Γ' x e A1 A2 :
(binder_insert x A1 Γ e : A2 Γ') -∗
(<![x:=A1]!> Γ e : A2 Γ') -∗
Γ (λ: x, e) : A1 A2 ∅.
Proof.
iIntros "#He" (vs) "!> HΓ /=".
......@@ -89,7 +89,7 @@ Section properties.
(* Typing rule for introducing copyable functions *)
Lemma ltyped_rec Γ Γ' Γ'' f x e A1 A2 :
env_copy Γ Γ' -∗
(binder_insert f (A1 A2)%lty (binder_insert x A1 Γ') e : A2 Γ'') -∗
(<![f:=A1 A2]!> $ <![x:=A1]!> Γ' e : A2 Γ'') -∗
Γ (rec: f x := e) : A1 A2 ∅.
Proof.
iIntros "#Hcopy #He". iIntros (vs) "!> HΓ /=". iApply wp_fupd. wp_pures.
......@@ -98,8 +98,7 @@ Section properties.
iModIntro. iSplitL; last by iApply env_ltyped_empty.
iLöb as "IH".
iIntros (v) "!> HA1". wp_pures. set (r := RecV f x _).
iDestruct ("He" $!(binder_insert f r (binder_insert x v vs))
with "[HΓ HA1]") as "He'".
iDestruct ("He" $! (<![f:=r]!> $ <![x:=v]!> vs) with "[HΓ HA1]") as "He'".
{ iApply (env_ltyped_insert with "IH").
iApply (env_ltyped_insert with "HA1 HΓ"). }
iDestruct (wp_wand _ _ _ _ (ltty_car A2) with "He' []") as "He'".
......@@ -112,7 +111,7 @@ Section properties.
Qed.
Lemma ltyped_let Γ1 Γ2 Γ3 x e1 e2 A1 A2 :
(Γ1 e1 : A1 Γ2) -∗ (binder_insert x A1 Γ2 e2 : A2 Γ3) -∗
(Γ1 e1 : A1 Γ2) -∗ (<![x:=A1]!> Γ2 e2 : A2 Γ3) -∗
Γ1 (let: x:=e1 in e2) : A2 binder_delete x Γ3.
Proof.
iIntros "#He1 #He2 !>". iIntros (vs) "HΓ1"=> /=.
......@@ -243,7 +242,7 @@ Section properties.
Lemma ltyped_unpack {k} Γ1 Γ2 Γ3 (x : string) e (C : lty Σ k ltty Σ) A :
Γ1 !! x = Some (lty_exist C)
( X, binder_insert x (C X) Γ1 e : A Γ2) -∗
( X, <![x:=C X]!> Γ1 e : A Γ2) -∗
(Γ1 e : A Γ2).
Proof.
iIntros (Hx) "#He". iIntros (vs) "!> HΓ".
......@@ -443,7 +442,7 @@ Section properties.
Lemma ltyped_recv_texist {kt} Γ1 Γ2 (xc : string) (x : binder) (e : expr)
(A : ltys Σ kt ltty Σ) (S : ltys Σ kt lsty Σ) (B : ltty Σ) :
( Ys,
binder_insert x (A Ys) (<[xc:=(chan (S Ys))%lty]> Γ1) e : B Γ2) -∗
<![x:=A Ys]!> $ <[xc:=(chan (S Ys))%lty]> Γ1 e : B Γ2) -∗
<[xc:=(chan (<??.. Xs> TY A Xs; S Xs))%lty]> Γ1
(let: x := recv xc in e) : B binder_delete x Γ2.
Proof.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment