Skip to content
Snippets Groups Projects
Commit 0ec00437 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Make type in shared ref copy.

parent c9b8604d
No related branches found
No related tags found
No related merge requests found
......@@ -229,14 +229,13 @@ Section subtyping_rules.
iIntros "#[Hle1 Hle2]" (v) "!>". iDestruct 1 as (l ->) "Hinv".
iExists l. iSplit; first done.
iApply (inv_iff with "Hinv"). iIntros "!> !>". iSplit.
- iDestruct 1 as (v) "[Hl HA]". iExists v. iFrame "Hl". by iApply "Hle1".
- iDestruct 1 as (v) "[Hl HA]". iExists v. iFrame "Hl". by iApply "Hle2".
- iDestruct 1 as (v) "[Hl #HA]". iExists v. iIntros "{$Hl} !>". by iApply "Hle1".
- iDestruct 1 as (v) "[Hl #HA]". iExists v. iIntros "{$Hl} !>". by iApply "Hle2".
Qed.
Lemma lty_copyable_shr_ref A :
lty_copyable (ref_shr A).
Proof. iIntros (v) "!> #Hv !>". iFrame "Hv". Qed.
Lemma lty_le_chan S1 S2 :
(S1 <: S2) -∗ chan S1 <: chan S2.
Proof.
......
......@@ -33,7 +33,7 @@ Definition lty_ref_mut `{heapG Σ} (A : ltty Σ) : ltty Σ := Ltty (λ w,
(l : loc) (v : val), w = #l l v ltty_car A v)%I.
Definition ref_shrN := nroot .@ "shr_ref".
Definition lty_ref_shr `{heapG Σ} (A : ltty Σ) : ltty Σ := Ltty (λ w,
l : loc, w = #l inv (ref_shrN .@ l) ( v, l v ltty_car A v))%I.
l : loc, w = #l inv (ref_shrN .@ l) ( v, l v ltty_car A v))%I.
Definition lty_chan `{heapG Σ, chanG Σ} (P : lsty Σ) : ltty Σ :=
Ltty (λ w, w lsty_car P)%I.
......
......@@ -306,40 +306,35 @@ Section properties.
(** Weak Reference properties *)
Lemma ltyped_upgrade_shared Γ Γ' e A :
(Γ e : ref_mut A Γ') -∗
(Γ e : ref_mut (copy A) Γ') -∗
Γ e : ref_shr A Γ'.
Proof.
iIntros "#He" (vs) "!> HΓ".
iApply wp_fupd.
iIntros "#He" (vs) "!> HΓ". iApply wp_fupd.
iApply (wp_wand with "(He HΓ)"). iIntros (v) "[Hv HΓ']".
iDestruct "Hv" as (l w ->) "[Hl HA]".
iFrame "HΓ'".
iExists l.
iMod (inv_alloc (ref_shrN .@ l) _ ( v : val, l v ltty_car A v) with "[Hl HA]") as "Href".
{ iExists w. iFrame "Hl HA". }
iModIntro.
by iFrame "Href".
iFrame "HΓ'". iExists l.
iMod (inv_alloc (ref_shrN .@ l) _
( v : val, l v ltty_car A v) with "[Hl HA]") as "$"; last done.
iExists w. iFrame "Hl HA".
Qed.
Lemma ltyped_load_shared Γ Γ' e A :
(Γ e : ref_shr A Γ') -∗
Γ ! e : copy- A Γ'.
Γ ! e : A Γ'.
Proof.
iIntros "#He" (vs) "!> HΓ /=".
wp_bind (subst_map vs e).
iApply (wp_wand with "(He HΓ)"). iIntros (v) "[Hv HΓ]".
iDestruct "Hv" as (l ->) "#Hv".
iInv (ref_shrN .@ l) as (v) "[>Hl HA]" "Hclose".
iInv (ref_shrN .@ l) as (v) "[>Hl #HA]" "Hclose".
wp_load.
iAssert (ltty_car (copy- A) v)%lty as "#HAm". { iApply coreP_intro. iApply "HA". }
iMod ("Hclose" with "[Hl HA]") as "_".
{ iExists v. iFrame "Hl HA". }
iModIntro.
iFrame "HAm HΓ".
by iIntros "!> {$HΓ}".
Qed.
Lemma ltyped_store_shared Γ1 Γ2 Γ3 e1 e2 A :
(Γ1 e2 : A Γ2) -∗
(Γ1 e2 : copy A Γ2) -∗
(Γ2 e1 : ref_shr A Γ3) -∗
(Γ1 e1 <- e2 : () Γ3).
Proof.
......@@ -353,7 +348,7 @@ Section properties.
wp_store.
iMod ("Hclose" with "[Hl Hv]") as "_".
{ iExists v. iFrame "Hl Hv". }
iModIntro. iSplit=>//.
iModIntro. by iSplit.
Qed.
Lemma ltyped_fetch_and_add_shared Γ1 Γ2 Γ3 e1 e2 :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment