Skip to content
Snippets Groups Projects
Commit 3724e8ef authored by Jonas Kastberg's avatar Jonas Kastberg
Browse files

WIP: Initial attempt at recv and unpack rules

parent c6673311
No related branches found
No related tags found
No related merge requests found
......@@ -258,6 +258,29 @@ Section properties.
iApply env_ltyped_delete=> //.
Qed.
Lemma texist_exist {kt : ktele Σ} (C : ltys kt ltty Σ) v :
ltty_car (lty_texist C) v -∗ ( X, ltty_car (C X) v).
Proof. Admitted.
Lemma ltyped_unpack' {kt} Γ1 Γ2 Γ3 x e1 e2 (C : ltys kt ltty Σ) B :
(Γ1 e1 : lty_texist C Γ2) -∗
( Ys, binder_insert x (C Ys) Γ2 e2 : B Γ3) -∗
Γ1 (let: x := e1 in e2) : B binder_delete x Γ3.
Proof.
iIntros "#He1 #He2 !>". iIntros (vs) "HΓ1"=> /=.
wp_apply (wp_wand with "(He1 HΓ1)").
iIntros (v) "[HC HΓ2]".
iDestruct (texist_exist with "HC") as (X) "HX".
wp_pures.
iDestruct (env_ltyped_insert _ _ x with "HX HΓ2") as "HΓ2".
iDestruct ("He2" with "HΓ2") as "He2'".
destruct x as [|x]; rewrite /= -?subst_map_insert //.
wp_apply (wp_wand with "He2'").
iIntros (w) "[HA2 HΓ3]".
iFrame.
iApply env_ltyped_delete=> //.
Qed.
(** Mutable Reference properties *)
Definition alloc : val := λ: "init", ref "init".
Lemma ltyped_alloc A :
......@@ -515,13 +538,35 @@ Section properties.
iExists v, c. eauto with iFrame.
Qed.
Lemma ltyped_recv {kt : ktele Σ} Γ1 Γ2 (c : string) (x : binder) (e : expr)
Lemma ltyped_recv_poly {kt : ktele Σ} Γ1 Γ2 (c : string) (x : string) (e : expr)
(A : ltys kt ltty Σ) (S : ltys kt lsty Σ) (B : ltty Σ) :
( Ys, binder_insert x (A Ys) (<[c := (chan (S Ys))%lty ]> Γ1) e : B Γ2) -∗
<[c := (chan (<??> .. Xs, TY A Xs; S Xs))%lty]> Γ1
(let x := recv c in e) : B Γ2.
(let: x := recv c in e) : B binder_delete x Γ2.
Proof.
iIntros "#He !>". iIntros (vs) "HΓ"=> /=.
iDestruct (env_ltyped_lookup with "HΓ") as (v' Heq) "[Hc HΓ]".
{ by apply lookup_insert. }
rewrite Heq.
rewrite delete_insert; last by admit.
wp_apply (recv_spec with "[Hc]").
{ admit. }
iIntros (Xs) "[Hc HC]".
wp_pures.
iDestruct (texist_exist with "HC") as (X) "HX".
wp_pures.
iDestruct (env_ltyped_insert _ _ c (chan _) _ with "Hc HΓ") as "HΓ"=> /=.
iDestruct (env_ltyped_insert _ _ x with "[HX] HΓ") as "HΓ".
{ admit. }
iDestruct ("He" with "[HΓ]") as "He'".
{ admit. }
rewrite -subst_map_insert.
wp_apply (wp_wand with "He'").
iIntros (v) "[HB HΓ]". iFrame.
iApply env_ltyped_delete=> //.
Admitted.
Lemma ltyped_recv Γ (x : string) A S :
Lemma ltyped_recv Γ (x : string) A S :
<[x := (chan (<??> TY A; S))%lty]> Γ recv x : A <[x:=(chan S)%lty]> Γ.
Proof.
iIntros "!>" (vs) "HΓ"=> /=.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment