Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
Actris
Commits
3724e8ef
Commit
3724e8ef
authored
4 years ago
by
Jonas Kastberg
Browse files
Options
Downloads
Patches
Plain Diff
WIP: Initial attempt at recv and unpack rules
parent
c6673311
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/logrel/term_typing_rules.v
+48
-3
48 additions, 3 deletions
theories/logrel/term_typing_rules.v
with
48 additions
and
3 deletions
theories/logrel/term_typing_rules.v
+
48
−
3
View file @
3724e8ef
...
...
@@ -258,6 +258,29 @@ Section properties.
iApply
env_ltyped_delete
=>
//.
Qed
.
Lemma
texist_exist
{
kt
:
ktele
Σ
}
(
C
:
ltys
kt
→
ltty
Σ
)
v
:
ltty_car
(
lty_texist
C
)
v
-∗
(
∃
X
,
▷
ltty_car
(
C
X
)
v
)
.
Proof
.
Admitted
.
Lemma
ltyped_unpack'
{
kt
}
Γ1
Γ2
Γ3
x
e1
e2
(
C
:
ltys
kt
→
ltty
Σ
)
B
:
(
Γ1
⊨
e1
:
lty_texist
C
⫤
Γ2
)
-∗
(
∀
Ys
,
binder_insert
x
(
C
Ys
)
Γ2
⊨
e2
:
B
⫤
Γ3
)
-∗
Γ1
⊨
(
let
:
x
:=
e1
in
e2
)
:
B
⫤
binder_delete
x
Γ3
.
Proof
.
iIntros
"#He1 #He2 !>"
.
iIntros
(
vs
)
"HΓ1"
=>
/=.
wp_apply
(
wp_wand
with
"(He1 HΓ1)"
)
.
iIntros
(
v
)
"[HC HΓ2]"
.
iDestruct
(
texist_exist
with
"HC"
)
as
(
X
)
"HX"
.
wp_pures
.
iDestruct
(
env_ltyped_insert
_
_
x
with
"HX HΓ2"
)
as
"HΓ2"
.
iDestruct
(
"He2"
with
"HΓ2"
)
as
"He2'"
.
destruct
x
as
[|
x
];
rewrite
/=
-
?subst_map_insert
//.
wp_apply
(
wp_wand
with
"He2'"
)
.
iIntros
(
w
)
"[HA2 HΓ3]"
.
iFrame
.
iApply
env_ltyped_delete
=>
//.
Qed
.
(** Mutable Reference properties *)
Definition
alloc
:
val
:=
λ
:
"init"
,
ref
"init"
.
Lemma
ltyped_alloc
A
:
...
...
@@ -515,13 +538,35 @@ Section properties.
iExists
v
,
c
.
eauto
with
iFrame
.
Qed
.
Lemma
ltyped_recv
{
kt
:
ktele
Σ
}
Γ1
Γ2
(
c
:
string
)
(
x
:
binder
)
(
e
:
expr
)
Lemma
ltyped_recv
_poly
{
kt
:
ktele
Σ
}
Γ1
Γ2
(
c
:
string
)
(
x
:
string
)
(
e
:
expr
)
(
A
:
ltys
kt
→
ltty
Σ
)
(
S
:
ltys
kt
→
lsty
Σ
)
(
B
:
ltty
Σ
)
:
⊢
(
∀
Ys
,
binder_insert
x
(
A
Ys
)
(
<
[
c
:=
(
chan
(
S
Ys
))
%
lty
]
>
Γ1
)
⊨
e
:
B
⫤
Γ2
)
-∗
<
[
c
:=
(
chan
(
<
??
>
∃
.
.
Xs
,
TY
A
Xs
;
S
Xs
))
%
lty
]
>
Γ1
⊨
(
let
x
:=
recv
c
in
e
)
:
B
⫤
Γ2
.
(
let
:
x
:=
recv
c
in
e
)
:
B
⫤
binder_delete
x
Γ2
.
Proof
.
iIntros
"#He !>"
.
iIntros
(
vs
)
"HΓ"
=>
/=.
iDestruct
(
env_ltyped_lookup
with
"HΓ"
)
as
(
v'
Heq
)
"[Hc HΓ]"
.
{
by
apply
lookup_insert
.
}
rewrite
Heq
.
rewrite
delete_insert
;
last
by
admit
.
wp_apply
(
recv_spec
with
"[Hc]"
)
.
{
admit
.
}
iIntros
(
Xs
)
"[Hc HC]"
.
wp_pures
.
iDestruct
(
texist_exist
with
"HC"
)
as
(
X
)
"HX"
.
wp_pures
.
iDestruct
(
env_ltyped_insert
_
_
c
(
chan
_)
_
with
"Hc HΓ"
)
as
"HΓ"
=>
/=.
iDestruct
(
env_ltyped_insert
_
_
x
with
"[HX] HΓ"
)
as
"HΓ"
.
{
admit
.
}
iDestruct
(
"He"
with
"[HΓ]"
)
as
"He'"
.
{
admit
.
}
rewrite
-
subst_map_insert
.
wp_apply
(
wp_wand
with
"He'"
)
.
iIntros
(
v
)
"[HB HΓ]"
.
iFrame
.
iApply
env_ltyped_delete
=>
//.
Admitted
.
Lemma
ltyped_recv
Γ
(
x
:
string
)
A
S
:
Lemma
ltyped_recv
Γ
(
x
:
string
)
A
S
:
⊢
<
[
x
:=
(
chan
(
<
??
>
TY
A
;
S
))
%
lty
]
>
Γ
⊨
recv
x
:
A
⫤
<
[
x
:=(
chan
S
)
%
lty
]
>
Γ
.
Proof
.
iIntros
"!>"
(
vs
)
"HΓ"
=>
/=.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment