Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
Actris
Commits
c801fc33
Commit
c801fc33
authored
4 years ago
by
Jonas Kastberg
Browse files
Options
Downloads
Patches
Plain Diff
Nits
parent
25f6a014
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
theories/channel/proto.v
+4
-4
4 additions, 4 deletions
theories/channel/proto.v
theories/logrel/session_types.v
+1
-1
1 addition, 1 deletion
theories/logrel/session_types.v
theories/logrel/subtyping.v
+5
-5
5 additions, 5 deletions
theories/logrel/subtyping.v
with
10 additions
and
10 deletions
theories/channel/proto.v
+
4
−
4
View file @
c801fc33
...
...
@@ -152,7 +152,7 @@ Program Definition iProto_map_cont {Σ V}
λ
ne
p2
,
(
∃
p1
,
pc
(
Next
p1
)
∗
p2
≡
Next
(
rec
p1
))
%
I
.
Next
Obligation
.
solve_proper
.
Qed
.
Program
Definition
iProto_map_app_aux
{
Σ
V
}
Program
Definition
iProto_map_app_aux
{
Σ
V
}
(
f
:
action
→
action
)
(
p2
:
iProto
Σ
V
)
(
rec
:
iProto
Σ
V
-
n
>
iProto
Σ
V
)
:
iProto
Σ
V
-
n
>
iProto
Σ
V
:=
λ
ne
p1
,
match
proto_unfold
p1
return
_
with
...
...
@@ -579,7 +579,7 @@ Section proto.
{
by
iDestruct
(
proto_message_end_equivI
with
"Heq"
)
as
%
[]
.
}
iDestruct
"H"
as
(
a1
a2
pc1
pc2'
)
"(Hp1 & Hp2 & H)"
.
iDestruct
(
proto_message_equivI
with
"Hp2"
)
as
(
<-
)
"{Hp2} #Hpc"
.
iExists
_,
_;
iSplit
;
[
done
|]
.
destruct
a1
.
iExists
_,
_;
iSplit
;
[
done
|]
.
destruct
a1
.
-
iIntros
(
v
p2'
)
.
by
iRewrite
(
"Hpc"
$!
v
(
Next
p2'
))
.
-
iIntros
(
v1
v2
p1'
p2'
)
.
by
iRewrite
(
"Hpc"
$!
v2
(
Next
p2'
))
.
Qed
.
...
...
@@ -800,14 +800,14 @@ Section proto.
Lemma
iProto_le_dual_l
p1
p2
:
iProto_le
(
iProto_dual
p2
)
p1
-∗
iProto_le
(
iProto_dual
p1
)
p2
.
Proof
.
iIntros
"H"
.
iEval
(
rewrite
-
(
i
Proto_dual_involutive
p2
))
.
iIntros
"H"
.
iEval
(
rewrite
-
(
i
nvolutive
iProto_dual
p2
))
.
by
iApply
iProto_le_dual
.
Qed
.
Lemma
iProto_le_dual_r
p1
p2
:
iProto_le
p2
(
iProto_dual
p1
)
-∗
iProto_le
p1
(
iProto_dual
p2
)
.
Proof
.
iIntros
"H"
.
iEval
(
rewrite
-
(
i
Proto_dual_involutive
p1
))
.
iIntros
"H"
.
iEval
(
rewrite
-
(
i
nvolutive
iProto_dual
p1
))
.
by
iApply
iProto_le_dual
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/logrel/session_types.v
+
1
−
1
View file @
c801fc33
...
...
@@ -106,7 +106,7 @@ Section Propers.
Global
Instance
lsty_app_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
@
lsty_app
Σ
)
.
Proof
.
apply
ne_proper_2
,
_
.
Qed
.
Global
Instance
lsty_app_assoc
:
Assoc
(
≡
)
(
@
lsty_app
Σ
)
.
Proof
.
intros
S1
S2
S3
.
rewrite
/
lsty_app
.
by
rewrite
iProto_app_
assoc
.
Qed
.
Proof
.
intros
S1
S2
S3
.
rewrite
/
lsty_app
.
by
rewrite
assoc
.
Qed
.
Global
Instance
lsty_app_end_l
:
LeftId
(
≡
)
lsty_end
(
@
lsty_app
Σ
)
.
Proof
.
intros
[
S
]
.
rewrite
/
lsty_app
.
by
rewrite
left_id
.
Qed
.
Global
Instance
lsty_app_end_r
:
RightId
(
≡
)
lsty_end
(
@
lsty_app
Σ
)
.
...
...
This diff is collapsed.
Click to expand it.
theories/logrel/subtyping.v
+
5
−
5
View file @
c801fc33
...
...
@@ -100,7 +100,7 @@ Section subtype.
Qed
.
Lemma
lty_le_exist_elim
C
B
:
⊢
(
C
B
)
<:
(
∃
A
,
C
A
)
.
⊢
C
B
<:
∃
A
,
C
A
.
Proof
.
iIntros
"!>"
(
v
)
"Hle"
.
by
iExists
B
.
Qed
.
Lemma
lty_le_rec_1
(
C
:
lty
Σ
→
lty
Σ
)
`{
!
Contractive
C
}
:
...
...
@@ -293,12 +293,12 @@ Section subtype.
Proof
.
iIntros
"#H1 #H2 !>"
.
by
iApply
iProto_le_app
.
Qed
.
Lemma
lsty_le_app_assoc_l
S1
S2
S3
:
⊢
(
S1
<++>
(
S2
<++>
S3
)
)
<
s
:
(
(
S1
<++>
S2
)
<++>
S3
)
.
Proof
.
rewrite
lsty_app_
assoc
.
iApply
lsty_le_refl
.
Qed
.
⊢
S1
<++>
(
S2
<++>
S3
)
<
s
:
(
S1
<++>
S2
)
<++>
S3
.
Proof
.
rewrite
assoc
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_app_assoc_r
S1
S2
S3
:
⊢
(
(
S1
<++>
S2
)
<++>
S3
)
<
s
:
(
S1
<++>
(
S2
<++>
S3
)
)
.
Proof
.
rewrite
lsty_app_
assoc
.
iApply
lsty_le_refl
.
Qed
.
⊢
(
S1
<++>
S2
)
<++>
S3
<
s
:
S1
<++>
(
S2
<++>
S3
)
.
Proof
.
rewrite
assoc
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_app_id_l_l
S
:
⊢
(
END
<++>
S
)
<
s
:
S
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment