Skip to content
Snippets Groups Projects
Commit c801fc33 authored by Jonas Kastberg's avatar Jonas Kastberg
Browse files

Nits

parent 25f6a014
No related branches found
No related tags found
No related merge requests found
......@@ -152,7 +152,7 @@ Program Definition iProto_map_cont {Σ V}
λne p2, ( p1, pc (Next p1) p2 Next (rec p1))%I.
Next Obligation. solve_proper. Qed.
Program Definition iProto_map_app_aux {Σ V}
Program Definition iProto_map_app_aux {Σ V}
(f : action action) (p2 : iProto Σ V)
(rec : iProto Σ V -n> iProto Σ V) : iProto Σ V -n> iProto Σ V := λne p1,
match proto_unfold p1 return _ with
......@@ -579,7 +579,7 @@ Section proto.
{ by iDestruct (proto_message_end_equivI with "Heq") as %[]. }
iDestruct "H" as (a1 a2 pc1 pc2') "(Hp1 & Hp2 & H)".
iDestruct (proto_message_equivI with "Hp2") as (<-) "{Hp2} #Hpc".
iExists _, _; iSplit; [done|]. destruct a1.
iExists _, _; iSplit; [done|]. destruct a1.
- iIntros (v p2'). by iRewrite ("Hpc" $! v (Next p2')).
- iIntros (v1 v2 p1' p2'). by iRewrite ("Hpc" $! v2 (Next p2')).
Qed.
......@@ -800,14 +800,14 @@ Section proto.
Lemma iProto_le_dual_l p1 p2 :
iProto_le (iProto_dual p2) p1 -∗ iProto_le (iProto_dual p1) p2.
Proof.
iIntros "H". iEval (rewrite -(iProto_dual_involutive p2)).
iIntros "H". iEval (rewrite -(involutive iProto_dual p2)).
by iApply iProto_le_dual.
Qed.
Lemma iProto_le_dual_r p1 p2 :
iProto_le p2 (iProto_dual p1) -∗ iProto_le p1 (iProto_dual p2).
Proof.
iIntros "H". iEval (rewrite -(iProto_dual_involutive p1)).
iIntros "H". iEval (rewrite -(involutive iProto_dual p1)).
by iApply iProto_le_dual.
Qed.
......
......@@ -106,7 +106,7 @@ Section Propers.
Global Instance lsty_app_proper : Proper (() ==> () ==> ()) (@lsty_app Σ).
Proof. apply ne_proper_2, _. Qed.
Global Instance lsty_app_assoc : Assoc () (@lsty_app Σ).
Proof. intros S1 S2 S3. rewrite /lsty_app. by rewrite iProto_app_assoc. Qed.
Proof. intros S1 S2 S3. rewrite /lsty_app. by rewrite assoc. Qed.
Global Instance lsty_app_end_l : LeftId () lsty_end (@lsty_app Σ).
Proof. intros [S]. rewrite /lsty_app. by rewrite left_id. Qed.
Global Instance lsty_app_end_r : RightId () lsty_end (@lsty_app Σ).
......
......@@ -100,7 +100,7 @@ Section subtype.
Qed.
Lemma lty_le_exist_elim C B :
(C B) <: ( A, C A).
C B <: A, C A.
Proof. iIntros "!>" (v) "Hle". by iExists B. Qed.
Lemma lty_le_rec_1 (C : lty Σ lty Σ) `{!Contractive C} :
......@@ -293,12 +293,12 @@ Section subtype.
Proof. iIntros "#H1 #H2 !>". by iApply iProto_le_app. Qed.
Lemma lsty_le_app_assoc_l S1 S2 S3 :
(S1 <++> (S2 <++> S3)) <s: ((S1 <++> S2) <++> S3).
Proof. rewrite lsty_app_assoc. iApply lsty_le_refl. Qed.
S1 <++> (S2 <++> S3) <s: (S1 <++> S2) <++> S3.
Proof. rewrite assoc. iApply lsty_le_refl. Qed.
Lemma lsty_le_app_assoc_r S1 S2 S3 :
((S1 <++> S2) <++> S3) <s: (S1 <++> (S2 <++> S3)).
Proof. rewrite lsty_app_assoc. iApply lsty_le_refl. Qed.
(S1 <++> S2) <++> S3 <s: S1 <++> (S2 <++> S3).
Proof. rewrite assoc. iApply lsty_le_refl. Qed.
Lemma lsty_le_app_id_l_l S :
(END <++> S) <s: S.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment