Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
Actris
Commits
df678f5f
Commit
df678f5f
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More basic examples.
parent
a7b129ac
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/examples/basics.v
+56
-16
56 additions, 16 deletions
theories/examples/basics.v
with
56 additions
and
16 deletions
theories/examples/basics.v
+
56
−
16
View file @
df678f5f
...
...
@@ -10,12 +10,12 @@ Definition prog1 : val := λ: <>,
recv
"c"
.
(** Tranfering References *)
Definition
prog
2
:
val
:=
λ
:
<>
,
Definition
prog
1_ref
:
val
:=
λ
:
<>
,
let
:
"c"
:=
start_chan
(
λ
:
"c'"
,
send
"c'"
(
ref
#
42
))
in
!
(
recv
"c"
)
.
(** Delegation, i.e. transfering channels *)
Definition
prog
3
:
val
:=
λ
:
<>
,
Definition
prog
1_del
:
val
:=
λ
:
<>
,
let
:
"c1"
:=
start_chan
(
λ
:
"c1'"
,
let
:
"cc2"
:=
new_chan
#
()
in
send
"c1'"
(
Fst
"cc2"
);;
...
...
@@ -23,14 +23,26 @@ Definition prog3 : val := λ: <>,
recv
(
recv
"c1"
)
.
(** Dependent protocols *)
Definition
prog
4
:
val
:=
λ
:
<>
,
Definition
prog
2
:
val
:=
λ
:
<>
,
let
:
"c"
:=
start_chan
(
λ
:
"c'"
,
let
:
"x"
:=
recv
"c'"
in
send
"c'"
(
"x"
+
#
2
))
in
send
"c"
#
40
;;
recv
"c"
.
Definition
prog2_ref
:
val
:=
λ
:
<>
,
let
:
"c"
:=
start_chan
(
λ
:
"c'"
,
let
:
"l"
:=
recv
"c'"
in
"l"
<-
!
"l"
+
#
2
;;
send
"c'"
#
())
in
let
:
"l"
:=
ref
#
40
in
send
"c"
"l"
;;
recv
"c"
;;
!
"l"
.
Definition
prog2_del
:
val
:=
λ
:
<>
,
let
:
"c1"
:=
start_chan
(
λ
:
"c1'"
,
let
:
"cc2"
:=
new_chan
#
()
in
send
"c1'"
(
Fst
"cc2"
);;
let
:
"x"
:=
recv
(
Snd
"cc2"
)
in
send
(
Snd
"cc2"
)
(
"x"
+
#
2
))
in
let
:
"c2'"
:=
recv
"c1"
in
send
"c2'"
#
40
;;
recv
"c2'"
.
(** Transfering higher-order functions *)
Definition
prog
5
:
val
:=
λ
:
<>
,
Definition
prog
3
:
val
:=
λ
:
<>
,
let
:
"c"
:=
start_chan
(
λ
:
"c'"
,
let
:
"f"
:=
recv
"c'"
in
send
"c'"
(
λ
:
<>
,
"f"
#
()
+
#
2
))
in
let
:
"r"
:=
ref
#
40
in
...
...
@@ -52,16 +64,24 @@ Context `{heapG Σ, proto_chanG Σ}.
Definition
prot1
:
iProto
Σ
:=
(
<
?
>
MSG
#
42
;
END
)
%
proto
.
Definition
prot
2
:
iProto
Σ
:=
Definition
prot
1_ref
:
iProto
Σ
:=
(
<
?
>
l
:
loc
,
MSG
#
l
{{
l
↦
#
42
}};
END
)
%
proto
.
Definition
prot
3
:
iProto
Σ
:=
Definition
prot
1_del
:
iProto
Σ
:=
(
<
?
>
c
:
val
,
MSG
c
{{
c
↣
prot1
}};
END
)
%
proto
.
Definition
prot
4
:
iProto
Σ
:=
Definition
prot
2
:
iProto
Σ
:=
(
<!>
x
:
Z
,
MSG
#
x
;
<
?
>
MSG
#
(
x
+
2
);
END
)
%
proto
.
Definition
prot5
:
iProto
Σ
:=
Definition
prot2_ref
:
iProto
Σ
:=
(
<!>
(
l
:
loc
)
(
x
:
Z
),
MSG
#
l
{{
l
↦
#
x
}};
<
?
>
MSG
#
()
{{
l
↦
#
(
x
+
2
)
}};
END
)
%
proto
.
Definition
prot2_del
:
iProto
Σ
:=
(
<
?
>
c
:
val
,
MSG
c
{{
c
↣
prot2
}};
END
)
%
proto
.
Definition
prot3
:
iProto
Σ
:=
(
<!>
(
P
:
iProp
Σ
)
(
Φ
:
Z
→
iProp
Σ
)
(
vf
:
val
),
MSG
vf
{{
{{{
P
}}}
vf
#
()
{{{
x
,
RET
#
x
;
Φ
x
}}}
}};
<
?
>
(
vg
:
val
),
...
...
@@ -83,36 +103,56 @@ Proof.
-
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog
2
_spec
:
{{{
True
}}}
prog
2
#
()
{{{
RET
#
42
;
True
}}}
.
Lemma
prog
1_ref
_spec
:
{{{
True
}}}
prog
1_ref
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot
2
);
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot
1_ref
);
iIntros
(
c
)
"Hc"
.
-
wp_alloc
l
as
"Hl"
.
by
wp_send
with
"[$Hl]"
.
-
wp_recv
(
l
)
as
"Hl"
.
wp_load
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog
3
_spec
:
{{{
True
}}}
prog
3
#
()
{{{
RET
#
42
;
True
}}}
.
Lemma
prog
1_del
_spec
:
{{{
True
}}}
prog
1_del
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot
3
);
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot
1_del
);
iIntros
(
c
)
"Hc"
.
-
wp_apply
(
new_chan_proto_spec
with
"[//]"
)
.
iIntros
(
c2
c2'
)
"Hcc2"
.
iMod
(
"Hcc2"
$!
prot1
)
as
"[Hc2 Hc2']"
.
wp_send
with
"[$Hc2]"
.
by
wp_send
with
"[]"
.
-
wp_recv
(
c2
)
as
"Hc2"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog
4
_spec
:
{{{
True
}}}
prog
4
#
()
{{{
RET
#
42
;
True
}}}
.
Lemma
prog
2
_spec
:
{{{
True
}}}
prog
2
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot
4
);
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot
2
);
iIntros
(
c
)
"Hc"
.
-
wp_recv
(
x
)
as
"_"
.
by
wp_send
with
"[]"
.
-
wp_send
with
"[//]"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog5_spec
:
{{{
True
}}}
prog5
#
()
{{{
RET
#
42
;
True
}}}
.
Lemma
prog2_ref_spec
:
{{{
True
}}}
prog2_ref
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot2_ref
);
iIntros
(
c
)
"Hc"
.
-
wp_recv
(
l
x
)
as
"Hl"
.
wp_load
.
wp_store
.
by
wp_send
with
"[Hl]"
.
-
wp_alloc
l
as
"Hl"
.
wp_send
with
"[$Hl]"
.
wp_recv
as
"Hl"
.
wp_load
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog2_del_spec
:
{{{
True
}}}
prog2_del
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot5
);
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot2_del
);
iIntros
(
c
)
"Hc"
.
-
wp_apply
(
new_chan_proto_spec
with
"[//]"
)
.
iIntros
(
c2
c2'
)
"Hcc2"
.
iMod
(
"Hcc2"
$!
prot2
)
as
"[Hc2 Hc2']"
.
wp_send
with
"[$Hc2]"
.
wp_recv
(
x
)
as
"_"
.
by
wp_send
with
"[]"
.
-
wp_recv
(
c2
)
as
"Hc2"
.
wp_send
with
"[//]"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog3_spec
:
{{{
True
}}}
prog3
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot3
);
iIntros
(
c
)
"Hc"
.
-
wp_recv
(
P
Ψ
vf
)
as
"#Hf"
.
wp_send
with
"[]"
;
last
done
.
iIntros
"!>"
(
Ψ'
)
"HP HΨ'"
.
wp_apply
(
"Hf"
with
"HP"
);
iIntros
(
x
)
"HΨ"
.
wp_pures
.
by
iApply
"HΨ'"
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment