Newer
Older
Robbert Krebbers
committed
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export base tactics orders.
(** * Theorems *)
Context `{Collection A C}.
Robbert Krebbers
committed
Lemma elem_of_empty x : x ∈ ∅ ↔ False.
Proof. split. apply not_elem_of_empty. done. Qed.
Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Global Instance collection_subseteq: SubsetEq C := λ X Y,
Robbert Krebbers
committed
∀ x, x ∈ X → x ∈ Y.
Global Instance: LowerBoundedLattice C.
Proof. firstorder auto. Qed.
Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y.
Proof. done. Qed.
Lemma elem_of_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. firstorder. Qed.
Lemma elem_of_equiv_alt X Y :
X ≡ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X).
Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X.
Proof.
split.
* intros ??. rewrite elem_of_singleton. intro. by subst.
* intros Ex. by apply (Ex x), elem_of_singleton.
Qed.
Robbert Krebbers
committed
Global Instance singleton_proper : Proper ((=) ==> (≡)) singleton.
Proof. repeat intro. by subst. Qed.
Robbert Krebbers
committed
Global Instance elem_of_proper: Proper ((=) ==> (≡) ==> iff) (∈).
Lemma elem_of_union_list (x : A) (Xs : list C) :
x ∈ ⋃ Xs ↔ ∃ X, In X Xs ∧ x ∈ X.
Proof.
split.
* induction Xs; simpl; intros HXs.
+ by apply elem_of_empty in HXs.
+ apply elem_of_union in HXs. naive_solver.
* intros [X []]. induction Xs; [done | intros [?|?] ?; subst; simpl].
+ by apply elem_of_union_l.
+ apply elem_of_union_r; auto.
Qed.
Lemma non_empty_singleton x : {[ x ]} ≢ ∅.
Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
Lemma intersection_twice x : {[x]} ∩ {[x]} ≡ {[x]}.
split; intros y; rewrite elem_of_intersection, !elem_of_singleton; tauto.
Qed.
Lemma not_elem_of_singleton x y : x ∉ {[ y ]} ↔ x ≠ y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. rewrite elem_of_union. tauto. Qed.
Context `{∀ (X Y : C), Decision (X ⊆ Y)}.
Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x ∈ X) | 100.
Proof.
refine (cast_if (decide_rel (⊆) {[ x ]} X));
by rewrite elem_of_subseteq_singleton.
Defined.
Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof.
rewrite elem_of_intersection.
destruct (decide (x ∈ X)); tauto.
Qed.
Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y.
Proof.
rewrite elem_of_difference.
destruct (decide (x ∈ Y)); tauto.
Qed.
Lemma union_difference X Y : X ∪ Y ∖ X ≡ X ∪ Y.
Proof.
split; intros x; rewrite !elem_of_union, elem_of_difference.
* tauto.
* destruct (decide (x ∈ X)); tauto.
Robbert Krebbers
committed
Qed.
Ltac decompose_empty := repeat
match goal with
| H : _ ∪ _ ≡ ∅ |- _ => apply empty_union in H; destruct H
| H : _ ∪ _ ≢ ∅ |- _ => apply non_empty_union in H; destruct H
| H : {[ _ ]} ≡ ∅ |- _ => destruct (non_empty_singleton _ H)
end.
Robbert Krebbers
committed
(** * Theorems about map *)
Section map.
Lemma elem_of_map_1 (f : A → A) (X : C) (x : A) :
x ∈ map f X → ∃ y, x = f y ∧ y ∈ X.
Proof. intros. by apply (elem_of_map _). Qed.
Lemma elem_of_map_2 (f : A → A) (X : C) (x : A) :
Lemma elem_of_map_2_alt (f : A → A) (X : C) (x : A) y :
x ∈ X → y = f x → y ∈ map f X.
Robbert Krebbers
committed
End map.
(** * Tactics *)
(** The first pass consists of eliminating all occurrences of [(∪)], [(∩)],
[(∖)], [map], [∅], [{[_]}], [(≡)], and [(⊆)], by rewriting these into
logically equivalent propositions. For example we rewrite [A → x ∈ X ∪ ∅] into
[A → x ∈ X ∨ False]. *)
Ltac unfold_elem_of :=
repeat_on_hyps (fun H =>
repeat match type of H with
| context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq in H
| context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt in H
| context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty in H
| context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
| context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union in H
| context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection in H
| context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference in H
| context [ _ ∈ map _ _ ] => setoid_rewrite elem_of_map in H
end);
repeat match goal with
| |- context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq
| |- context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt
Robbert Krebbers
committed
| |- context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty
| |- context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton
| |- context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union
| |- context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection
| |- context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference
| |- context [ _ ∈ map _ _ ] => setoid_rewrite elem_of_map
end.
Robbert Krebbers
committed
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers
committed
unfold_elem_of;
solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.
(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
Tactic Notation "esolve_elem_of" tactic3(tac) :=
Robbert Krebbers
committed
simpl in *;
unfold_elem_of;
naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
Robbert Krebbers
committed
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
Robbert Krebbers
committed
let rec go H :=
lazymatch type of H with
| _ ∈ ∅ => apply elem_of_empty in H; destruct H
| ?l ∈ {[ ?l' ]} =>
apply elem_of_singleton in H; first [ subst l' | subst l | idtac ]
Robbert Krebbers
committed
| _ ∈ _ ∪ _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_union in H;
destruct H as [H1|H2]; [go H1 | go H2]
| _ ∈ _ ∩ _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_intersection in H;
destruct H as [H1 H2]; go H1; go H2
| _ ∈ _ ∖ _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_difference in H;
destruct H as [H1 H2]; go H1; go H2
| _ ∈ map _ _ =>
let H1 := fresh in apply elem_of_map in H;
destruct H as [?[? H1]]; go H1
| _ => idtac
end in go H.
Tactic Notation "decompose_elem_of" :=
repeat_on_hyps (fun H => decompose_elem_of H).
Robbert Krebbers
committed
(** * Sets without duplicates up to an equivalence *)
Section no_dup.
Context `{Collection A B} (R : relation A) `{!Equivalence R}.
Definition elem_of_upto (x : A) (X : B) := ∃ y, y ∈ X ∧ R x y.
Definition no_dup (X : B) := ∀ x y, x ∈ X → y ∈ X → R x y → x = y.
Global Instance: Proper ((≡) ==> iff) (elem_of_upto x).
Proof. firstorder. Qed.
Global Instance: Proper (R ==> (≡) ==> iff) elem_of_upto.
Proof.
intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
* rewrite <-E1, <-E2; intuition.
* rewrite E1, E2; intuition.
Qed.
Global Instance: Proper ((≡) ==> iff) no_dup.
Proof. firstorder. Qed.
Lemma elem_of_upto_elem_of x X : x ∈ X → elem_of_upto x X.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]} ↔ R x y.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_union X Y x :
elem_of_upto x (X ∪ Y) ↔ elem_of_upto x X ∨ elem_of_upto x Y.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma not_elem_of_upto x X : ¬elem_of_upto x X → ∀ y, y ∈ X → ¬R x y.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers
committed
Proof. unfold no_dup. solve_elem_of. Qed.
Lemma no_dup_add x X : ¬elem_of_upto x X → no_dup X → no_dup ({[ x ]} ∪ X).
Robbert Krebbers
committed
Proof. unfold no_dup, elem_of_upto. esolve_elem_of. Qed.
Lemma no_dup_inv_add x X : x ∉ X → no_dup ({[ x ]} ∪ X) → ¬elem_of_upto x X.
Proof.
intros Hin Hnodup [y [??]].
Robbert Krebbers
committed
rewrite (Hnodup x y) in Hin; solve_elem_of.
Lemma no_dup_inv_union_l X Y : no_dup (X ∪ Y) → no_dup X.
Robbert Krebbers
committed
Proof. unfold no_dup. solve_elem_of. Qed.
Lemma no_dup_inv_union_r X Y : no_dup (X ∪ Y) → no_dup Y.
Robbert Krebbers
committed
Proof. unfold no_dup. solve_elem_of. Qed.
Robbert Krebbers
committed
(** * Quantifiers *)
Section quantifiers.
Context `{Collection A B} (P : A → Prop).
Definition cforall X := ∀ x, x ∈ X → P x.
Definition cexists X := ∃ x, x ∈ X ∧ P x.
Lemma cforall_empty : cforall ∅.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_singleton x : cforall {[ x ]} ↔ P x.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_union X Y : cforall X → cforall Y → cforall (X ∪ Y).
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_union_inv_1 X Y : cforall (X ∪ Y) → cforall X.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_union_inv_2 X Y : cforall (X ∪ Y) → cforall Y.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_singleton x : cexists {[ x ]} ↔ P x.
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_union_1 X Y : cexists X → cexists (X ∪ Y).
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_union_2 X Y : cexists Y → cexists (X ∪ Y).
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_union_inv X Y : cexists (X ∪ Y) → cexists X ∨ cexists Y.
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Section more_quantifiers.
Context `{Collection A B}.
Robbert Krebbers
committed
Lemma cforall_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
Robbert Krebbers
committed
Proof. unfold cforall. naive_solver. Qed.
Lemma cexists_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
Robbert Krebbers
committed
Proof. unfold cexists. naive_solver. Qed.
Robbert Krebbers
committed
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Section fresh.
Context `{Collection A C} `{Fresh A C} `{!FreshSpec A C} .
Robbert Krebbers
committed
Definition fresh_sig (X : C) : { x : A | x ∉ X } :=
exist (∉ X) (fresh X) (is_fresh X).
Global Instance fresh_proper: Proper ((≡) ==> (=)) fresh.
Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
Robbert Krebbers
committed
Fixpoint fresh_list (n : nat) (X : C) : list A :=
match n with
| 0 => []
| S n => let x := fresh X in x :: fresh_list n ({[ x ]} ∪ X)
end.
Robbert Krebbers
committed
Global Instance fresh_list_proper: Proper ((=) ==> (≡) ==> (=)) fresh_list.
Proof.
intros ? n ?. subst.
induction n; simpl; intros ?? E; f_equal.
* by rewrite E.
* apply IHn. by rewrite E.
Robbert Krebbers
committed
Qed.
Lemma fresh_list_length n X : length (fresh_list n X) = n.
Proof. revert X. induction n; simpl; auto. Qed.
Lemma fresh_list_is_fresh n X x : In x (fresh_list n X) → x ∉ X.
Proof.
revert X. induction n; simpl.
* intros X [?| Hin]. subst.
+ apply is_fresh.
Robbert Krebbers
committed
+ apply IHn in Hin. solve_elem_of.
Qed.
Lemma fresh_list_nodup n X : NoDup (fresh_list n X).
Proof.
revert X.
induction n; simpl; constructor; auto.
intros Hin. apply fresh_list_is_fresh in Hin.
Robbert Krebbers
committed
solve_elem_of.