Skip to content
Snippets Groups Projects
Commit 3103b7bf authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Lemma for X ∪ Y ⊆ Z :left_right_arrow: X ⊆ Z ∧ Y ⊆ Z.

parent b8ffa59a
No related branches found
No related tags found
No related merge requests found
......@@ -338,6 +338,8 @@ Section simple_collection.
Proof. set_solver. Qed.
(** Union *)
Lemma union_subseteq X Y Z : X Y Z X Z Y Z.
Proof. set_solver. Qed.
Lemma not_elem_of_union x X Y : x X Y x X x Y.
Proof. set_solver. Qed.
Lemma elem_of_union_l x X Y : x X x X Y.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment