Skip to content
Snippets Groups Projects
Commit 31e0d1f6 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Better names for convertion functions from `gset` and `coPset`.

- Rename `gmap.to_gmap` into `gset_to_gmap`.
- Rename `gmap.of_gset` into `gset_to_propset`.
- Rename `coPset.to_Pset` into `coPset_to_Pset`.
- Rename `coPset.of_Pset` into `coPset_to_gset`.
- Rename `coPset.to_gset` into `coPset_to_gset`.
- Rename `coPset.of_gset` into `gset_to_coPset`.

The following `sed` script can be used for the first rename:

```
sed -i 's/to\_gmap/gset\_to\_gmap/g' $(find ./theories -name \*.v)
```

The latter is context sensitive, so was done manually.
parent b7e31ce2
No related branches found
No related tags found
No related merge requests found
...@@ -126,26 +126,26 @@ Lemma coPset_intersection_wf t1 t2 : ...@@ -126,26 +126,26 @@ Lemma coPset_intersection_wf t1 t2 :
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed. Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t). Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
Proof. induction t as [[]|[]]; simpl; eauto. Qed. Proof. induction t as [[]|[]]; simpl; eauto. Qed.
Lemma elem_to_Pset_singleton p q : e_of p (coPset_singleton_raw q) p = q. Lemma coPset_elem_of_singleton p q : e_of p (coPset_singleton_raw q) p = q.
Proof. Proof.
split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node]. split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node].
by revert q; induction p; intros [?|?|]; simpl; by revert q; induction p; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; intros; f_equal/=; auto. rewrite ?coPset_elem_of_node; intros; f_equal/=; auto.
Qed. Qed.
Lemma elem_to_Pset_union t1 t2 p : e_of p (t1 t2) = e_of p t1 || e_of p t2. Lemma coPset_elem_of_union t1 t2 p : e_of p (t1 t2) = e_of p t1 || e_of p t2.
Proof. Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl; by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl; rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r. rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
Qed. Qed.
Lemma elem_to_Pset_intersection t1 t2 p : Lemma coPset_elem_of_intersection t1 t2 p :
e_of p (t1 t2) = e_of p t1 && e_of p t2. e_of p (t1 t2) = e_of p t1 && e_of p t2.
Proof. Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl; by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl; rewrite ?coPset_elem_of_node; simpl;
rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r. rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
Qed. Qed.
Lemma elem_to_Pset_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t). Lemma coPset_elem_of_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
Proof. Proof.
by revert p; induction t as [[]|[]]; intros [?|?|]; simpl; by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl. rewrite ?coPset_elem_of_node; simpl.
...@@ -173,14 +173,14 @@ Instance coPset_set : Set_ positive coPset. ...@@ -173,14 +173,14 @@ Instance coPset_set : Set_ positive coPset.
Proof. Proof.
split; [split| |]. split; [split| |].
- by intros ??. - by intros ??.
- intros p q. apply elem_to_Pset_singleton. - intros p q. apply coPset_elem_of_singleton.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl. - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
by rewrite elem_to_Pset_union, orb_True. by rewrite coPset_elem_of_union, orb_True.
- intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl. - intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl.
by rewrite elem_to_Pset_intersection, andb_True. by rewrite coPset_elem_of_intersection, andb_True.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl. - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
by rewrite elem_to_Pset_intersection, by rewrite coPset_elem_of_intersection,
elem_to_Pset_opp, andb_True, negb_True. coPset_elem_of_opp, andb_True, negb_True.
Qed. Qed.
Instance coPset_leibniz : LeibnizEquiv coPset. Instance coPset_leibniz : LeibnizEquiv coPset.
...@@ -271,88 +271,88 @@ Proof. ...@@ -271,88 +271,88 @@ Proof.
Qed. Qed.
(** * Conversion to psets *) (** * Conversion to psets *)
Fixpoint to_Pset_raw (t : coPset_raw) : Pmap_raw () := Fixpoint coPset_to_Pset_raw (t : coPset_raw) : Pmap_raw () :=
match t with match t with
| coPLeaf _ => PLeaf | coPLeaf _ => PLeaf
| coPNode false l r => PNode' None (to_Pset_raw l) (to_Pset_raw r) | coPNode false l r => PNode' None (coPset_to_Pset_raw l) (coPset_to_Pset_raw r)
| coPNode true l r => PNode (Some ()) (to_Pset_raw l) (to_Pset_raw r) | coPNode true l r => PNode (Some ()) (coPset_to_Pset_raw l) (coPset_to_Pset_raw r)
end. end.
Lemma to_Pset_wf t : coPset_wf t Pmap_wf (to_Pset_raw t). Lemma coPset_to_Pset_wf t : coPset_wf t Pmap_wf (coPset_to_Pset_raw t).
Proof. induction t as [|[]]; simpl; eauto using PNode_wf. Qed. Proof. induction t as [|[]]; simpl; eauto using PNode_wf. Qed.
Definition to_Pset (X : coPset) : Pset := Definition coPset_to_Pset (X : coPset) : Pset :=
let (t,Ht) := X in Mapset (PMap (to_Pset_raw t) (to_Pset_wf _ Ht)). let (t,Ht) := X in Mapset (PMap (coPset_to_Pset_raw t) (coPset_to_Pset_wf _ Ht)).
Lemma elem_of_to_Pset X i : set_finite X i to_Pset X i X. Lemma elem_of_coPset_to_Pset X i : set_finite X i coPset_to_Pset X i X.
Proof. Proof.
rewrite coPset_finite_spec; destruct X as [t Ht]. rewrite coPset_finite_spec; destruct X as [t Ht].
change (coPset_finite t to_Pset_raw t !! i = Some () e_of i t). change (coPset_finite t coPset_to_Pset_raw t !! i = Some () e_of i t).
clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|]; clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
simpl; rewrite ?andb_True, ?PNode_lookup; naive_solver. simpl; rewrite ?andb_True, ?PNode_lookup; naive_solver.
Qed. Qed.
(** * Conversion from psets *) (** * Conversion from psets *)
Fixpoint of_Pset_raw (t : Pmap_raw ()) : coPset_raw := Fixpoint Pset_to_coPset_raw (t : Pmap_raw ()) : coPset_raw :=
match t with match t with
| PLeaf => coPLeaf false | PLeaf => coPLeaf false
| PNode None l r => coPNode false (of_Pset_raw l) (of_Pset_raw r) | PNode None l r => coPNode false (Pset_to_coPset_raw l) (Pset_to_coPset_raw r)
| PNode (Some _) l r => coPNode true (of_Pset_raw l) (of_Pset_raw r) | PNode (Some _) l r => coPNode true (Pset_to_coPset_raw l) (Pset_to_coPset_raw r)
end. end.
Lemma of_Pset_wf t : Pmap_wf t coPset_wf (of_Pset_raw t). Lemma Pset_to_coPset_wf t : Pmap_wf t coPset_wf (Pset_to_coPset_raw t).
Proof. Proof.
induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto. induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto.
- intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto. - intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto.
- destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r; - destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r;
rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition. rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition.
Qed. Qed.
Lemma elem_of_of_Pset_raw i t : e_of i (of_Pset_raw t) t !! i = Some (). Lemma elem_of_Pset_to_coPset_raw i t : e_of i (Pset_to_coPset_raw t) t !! i = Some ().
Proof. by revert i; induction t as [|[[]|]]; intros []; simpl; auto; split. Qed. Proof. by revert i; induction t as [|[[]|]]; intros []; simpl; auto; split. Qed.
Lemma of_Pset_raw_finite t : coPset_finite (of_Pset_raw t). Lemma Pset_to_coPset_raw_finite t : coPset_finite (Pset_to_coPset_raw t).
Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed. Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed.
Definition of_Pset (X : Pset) : coPset := Definition Pset_to_coPset (X : Pset) : coPset :=
let 'Mapset (PMap t Ht) := X in of_Pset_raw t of_Pset_wf _ Ht. let 'Mapset (PMap t Ht) := X in Pset_to_coPset_raw t Pset_to_coPset_wf _ Ht.
Lemma elem_of_of_Pset X i : i of_Pset X i X. Lemma elem_of_Pset_to_coPset X i : i Pset_to_coPset X i X.
Proof. destruct X as [[t ?]]; apply elem_of_of_Pset_raw. Qed. Proof. destruct X as [[t ?]]; apply elem_of_Pset_to_coPset_raw. Qed.
Lemma of_Pset_finite X : set_finite (of_Pset X). Lemma Pset_to_coPset_finite X : set_finite (Pset_to_coPset X).
Proof. Proof.
apply coPset_finite_spec; destruct X as [[t ?]]; apply of_Pset_raw_finite. apply coPset_finite_spec; destruct X as [[t ?]]; apply Pset_to_coPset_raw_finite.
Qed. Qed.
(** * Conversion to and from gsets of positives *) (** * Conversion to and from gsets of positives *)
Lemma to_gset_wf (m : Pmap ()) : gmap_wf (K:=positive) m. Lemma coPset_to_gset_wf (m : Pmap ()) : gmap_wf (K:=positive) m.
Proof. done. Qed. Proof. done. Qed.
Definition to_gset (X : coPset) : gset positive := Definition coPset_to_gset (X : coPset) : gset positive :=
let 'Mapset m := to_Pset X in let 'Mapset m := coPset_to_Pset X in
Mapset (GMap m (bool_decide_pack _ (to_gset_wf m))). Mapset (GMap m (bool_decide_pack _ (coPset_to_gset_wf m))).
Definition of_gset (X : gset positive) : coPset := Definition gset_to_coPset (X : gset positive) : coPset :=
let 'Mapset (GMap (PMap t Ht) _) := X in of_Pset_raw t of_Pset_wf _ Ht. let 'Mapset (GMap (PMap t Ht) _) := X in Pset_to_coPset_raw t Pset_to_coPset_wf _ Ht.
Lemma elem_of_to_gset X i : set_finite X i to_gset X i X. Lemma elem_of_coPset_to_gset X i : set_finite X i coPset_to_gset X i X.
Proof. Proof.
intros ?. rewrite <-elem_of_to_Pset by done. intros ?. rewrite <-elem_of_coPset_to_Pset by done.
unfold to_gset. by destruct (to_Pset X). unfold coPset_to_gset. by destruct (coPset_to_Pset X).
Qed. Qed.
Lemma elem_of_of_gset X i : i of_gset X i X. Lemma elem_of_gset_to_coPset X i : i gset_to_coPset X i X.
Proof. destruct X as [[[t ?]]]; apply elem_of_of_Pset_raw. Qed. Proof. destruct X as [[[t ?]]]; apply elem_of_Pset_to_coPset_raw. Qed.
Lemma of_gset_finite X : set_finite (of_gset X). Lemma gset_to_coPset_finite X : set_finite (gset_to_coPset X).
Proof. Proof.
apply coPset_finite_spec; destruct X as [[[t ?]]]; apply of_Pset_raw_finite. apply coPset_finite_spec; destruct X as [[[t ?]]]; apply Pset_to_coPset_raw_finite.
Qed. Qed.
(** * Domain of finite maps *) (** * Domain of finite maps *)
Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, of_Pset (dom _ m). Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, Pset_to_coPset (dom _ m).
Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset. Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset.
Proof. Proof.
split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset. split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset.
by rewrite elem_of_of_Pset, elem_of_dom. by rewrite elem_of_Pset_to_coPset, elem_of_dom.
Qed. Qed.
Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m, Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m,
of_gset (dom _ m). gset_to_coPset (dom _ m).
Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset. Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset.
Proof. Proof.
split; try apply _; intros A m i; unfold dom, gmap_dom_coPset. split; try apply _; intros A m i; unfold dom, gmap_dom_coPset.
by rewrite elem_of_of_gset, elem_of_dom. by rewrite elem_of_gset_to_coPset, elem_of_dom.
Qed. Qed.
(** * Suffix sets *) (** * Suffix sets *)
...@@ -405,7 +405,7 @@ Definition coPset_r (X : coPset) : coPset := ...@@ -405,7 +405,7 @@ Definition coPset_r (X : coPset) : coPset :=
Lemma coPset_lr_disjoint X : coPset_l X coPset_r X = ∅. Lemma coPset_lr_disjoint X : coPset_l X coPset_r X = ∅.
Proof. Proof.
apply elem_of_equiv_empty_L; intros p; apply Is_true_false. apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_intersection. destruct X as [t Ht]; simpl; clear Ht; rewrite coPset_elem_of_intersection.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl; revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl; rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto. rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
...@@ -413,7 +413,7 @@ Qed. ...@@ -413,7 +413,7 @@ Qed.
Lemma coPset_lr_union X : coPset_l X coPset_r X = X. Lemma coPset_lr_union X : coPset_l X coPset_r X = X.
Proof. Proof.
apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim. apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim.
destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_union. destruct X as [t Ht]; simpl; clear Ht; rewrite coPset_elem_of_union.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl; revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl; rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto. rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
......
...@@ -218,48 +218,48 @@ Instance gset_dom `{Countable K} {A} : Dom (gmap K A) (gset K) := mapset_dom. ...@@ -218,48 +218,48 @@ Instance gset_dom `{Countable K} {A} : Dom (gmap K A) (gset K) := mapset_dom.
Instance gset_dom_spec `{Countable K} : Instance gset_dom_spec `{Countable K} :
FinMapDom K (gmap K) (gset K) := mapset_dom_spec. FinMapDom K (gmap K) (gset K) := mapset_dom_spec.
Definition of_gset `{Countable A} (X : gset A) : propset A := Definition gset_to_propset `{Countable A} (X : gset A) : propset A :=
{[ x | x X ]}. {[ x | x X ]}.
Lemma elem_of_of_gset `{Countable A} (X : gset A) x : x of_gset X x X. Lemma elem_of_gset_to_propset `{Countable A} (X : gset A) x : x gset_to_propset X x X.
Proof. done. Qed. Proof. done. Qed.
Definition to_gmap `{Countable K} {A} (x : A) (X : gset K) : gmap K A := Definition gset_to_gmap `{Countable K} {A} (x : A) (X : gset K) : gmap K A :=
(λ _, x) <$> mapset_car X. (λ _, x) <$> mapset_car X.
Lemma lookup_to_gmap `{Countable K} {A} (x : A) (X : gset K) i : Lemma lookup_gset_to_gmap `{Countable K} {A} (x : A) (X : gset K) i :
to_gmap x X !! i = guard (i X); Some x. gset_to_gmap x X !! i = guard (i X); Some x.
Proof. Proof.
destruct X as [X]; unfold to_gmap, elem_of, mapset_elem_of; simpl. destruct X as [X]; unfold gset_to_gmap, elem_of, mapset_elem_of; simpl.
rewrite lookup_fmap. rewrite lookup_fmap.
case_option_guard; destruct (X !! i) as [[]|]; naive_solver. case_option_guard; destruct (X !! i) as [[]|]; naive_solver.
Qed. Qed.
Lemma lookup_to_gmap_Some `{Countable K} {A} (x : A) (X : gset K) i y : Lemma lookup_gset_to_gmap_Some `{Countable K} {A} (x : A) (X : gset K) i y :
to_gmap x X !! i = Some y i X x = y. gset_to_gmap x X !! i = Some y i X x = y.
Proof. rewrite lookup_to_gmap. simplify_option_eq; naive_solver. Qed. Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.
Lemma lookup_to_gmap_None `{Countable K} {A} (x : A) (X : gset K) i : Lemma lookup_gset_to_gmap_None `{Countable K} {A} (x : A) (X : gset K) i :
to_gmap x X !! i = None i X. gset_to_gmap x X !! i = None i X.
Proof. rewrite lookup_to_gmap. simplify_option_eq; naive_solver. Qed. Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.
Lemma to_gmap_empty `{Countable K} {A} (x : A) : to_gmap x = ∅. Lemma gset_to_gmap_empty `{Countable K} {A} (x : A) : gset_to_gmap x = ∅.
Proof. apply fmap_empty. Qed. Proof. apply fmap_empty. Qed.
Lemma to_gmap_union_singleton `{Countable K} {A} (x : A) i Y : Lemma gset_to_gmap_union_singleton `{Countable K} {A} (x : A) i Y :
to_gmap x ({[ i ]} Y) = <[i:=x]>(to_gmap x Y). gset_to_gmap x ({[ i ]} Y) = <[i:=x]>(gset_to_gmap x Y).
Proof. Proof.
apply map_eq; intros j; apply option_eq; intros y. apply map_eq; intros j; apply option_eq; intros y.
rewrite lookup_insert_Some, !lookup_to_gmap_Some, elem_of_union, rewrite lookup_insert_Some, !lookup_gset_to_gmap_Some, elem_of_union,
elem_of_singleton; destruct (decide (i = j)); intuition. elem_of_singleton; destruct (decide (i = j)); intuition.
Qed. Qed.
Lemma fmap_to_gmap `{Countable K} {A B} (f : A B) (X : gset K) (x : A) : Lemma fmap_gset_to_gmap `{Countable K} {A B} (f : A B) (X : gset K) (x : A) :
f <$> to_gmap x X = to_gmap (f x) X. f <$> gset_to_gmap x X = gset_to_gmap (f x) X.
Proof. Proof.
apply map_eq; intros j. rewrite lookup_fmap, !lookup_to_gmap. apply map_eq; intros j. rewrite lookup_fmap, !lookup_gset_to_gmap.
by simplify_option_eq. by simplify_option_eq.
Qed. Qed.
Lemma to_gmap_dom `{Countable K} {A B} (m : gmap K A) (y : B) : Lemma gset_to_gmap_dom `{Countable K} {A B} (m : gmap K A) (y : B) :
to_gmap y (dom _ m) = const y <$> m. gset_to_gmap y (dom _ m) = const y <$> m.
Proof. Proof.
apply map_eq; intros j. rewrite lookup_fmap, lookup_to_gmap. apply map_eq; intros j. rewrite lookup_fmap, lookup_gset_to_gmap.
destruct (m !! j) as [x|] eqn:?. destruct (m !! j) as [x|] eqn:?.
- by rewrite option_guard_True by (rewrite elem_of_dom; eauto). - by rewrite option_guard_True by (rewrite elem_of_dom; eauto).
- by rewrite option_guard_False by (rewrite not_elem_of_dom; eauto). - by rewrite option_guard_False by (rewrite not_elem_of_dom; eauto).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment