Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gregory Malecha
stdpp
Commits
93b4ec70
Commit
93b4ec70
authored
7 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Make `NatCancel` no backtracking and puts its internals in a module.
parent
91b86f56
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/nat_cancel.v
+65
-49
65 additions, 49 deletions
theories/nat_cancel.v
with
65 additions
and
49 deletions
theories/nat_cancel.v
+
65
−
49
View file @
93b4ec70
...
...
@@ -25,62 +25,78 @@ Results in:
The instances are setup up so that canceling is performed in two stages.
- In the first stage, using the class [NatCancel], it traverses [m] w.r.t. [S]
- In the first stage, using the class [NatCancel
L
], it traverses [m] w.r.t. [S]
and [+].
- In the second stage, for each leaf (i.e. a constant or arbitrary term)
obtained by the traversal in stage 1, it uses the class [NatCancel
Leaf
] to
obtained by the traversal in stage 1, it uses the class [NatCancel
R
] to
cancel the leaf in [n].
Be warned: Since the canceler is implemented using type classes it should only
be used it either of the inputs is relatively small. For bigger inputs, an
approach based on reflection would be better, but for small inputs, the overhead
of reification will probably not be worth it. *)
Class
NatCancel
(
m
n
m'
n'
:
nat
)
:=
nat_cancel
:
m'
+
n
=
m
+
n'
.
Hint
Mode
NatCancel
!
!
-
-
:
typeclass_instances
.
Class
NatCancelLeaf
(
m
n
m'
n'
:
nat
)
:=
nat_cancel_leaf
:
NatCancel
m
n
m'
n'
.
Hint
Mode
NatCancelLeaf
!
!
-
-
:
typeclass_instances
.
Global
Existing
Instance
nat_cancel_leaf
|
100
.
Class
MakeNatS
(
n1
n2
m
:
nat
)
:=
make_nat_S
:
m
=
n1
+
n2
.
Global
Instance
make_nat_S_0_l
n
:
MakeNatS
0
n
n
.
Proof
.
done
.
Qed
.
Global
Instance
make_nat_S_1
n
:
MakeNatS
1
n
(
S
n
)
.
Proof
.
done
.
Qed
.
Class
MakeNatPlus
(
n1
n2
m
:
nat
)
:=
make_nat_plus
:
m
=
n1
+
n2
.
Global
Instance
make_nat_plus_0_l
n
:
MakeNatPlus
0
n
n
.
Proof
.
done
.
Qed
.
Global
Instance
make_nat_plus_0_r
n
:
MakeNatPlus
n
0
n
.
Proof
.
unfold
MakeNatPlus
.
by
rewrite
Nat
.
add_0_r
.
Qed
.
Global
Instance
make_nat_plus_default
n1
n2
:
MakeNatPlus
n1
n2
(
n1
+
n2
)
|
100
.
Proof
.
done
.
Qed
.
Global
Instance
nat_cancel_leaf_here
m
:
NatCancelLeaf
m
m
0
0
|
0
.
Proof
.
by
unfold
NatCancelLeaf
,
NatCancel
.
Qed
.
Global
Instance
nat_cancel_leaf_else
m
n
:
NatCancelLeaf
m
n
m
n
|
100
.
Proof
.
by
unfold
NatCancelLeaf
,
NatCancel
.
Qed
.
Global
Instance
nat_cancel_leaf_plus
m
m'
m''
n1
n2
n1'
n2'
n1'n2'
:
NatCancelLeaf
m
n1
m'
n1'
→
NatCancelLeaf
m'
n2
m''
n2'
→
MakeNatPlus
n1'
n2'
n1'n2'
→
NatCancelLeaf
m
(
n1
+
n2
)
m''
n1'n2'
|
2
.
Proof
.
unfold
NatCancelLeaf
,
NatCancel
,
MakeNatPlus
.
omega
.
Qed
.
Global
Instance
nat_cancel_leaf_S_here
m
n
m'
n'
:
NatCancelLeaf
m
n
m'
n'
→
NatCancelLeaf
(
S
m
)
(
S
n
)
m'
n'
|
3
.
Proof
.
unfold
NatCancelLeaf
,
NatCancel
.
omega
.
Qed
.
Global
Instance
nat_cancel_leaf_S_else
m
n
m'
n'
:
NatCancelLeaf
m
n
m'
n'
→
NatCancelLeaf
m
(
S
n
)
m'
(
S
n'
)
|
4
.
Proof
.
unfold
NatCancelLeaf
,
NatCancel
.
omega
.
Qed
.
(** The instance [nat_cancel_S_both] is redundant, but may reduce proof search
quite a bit, e.g. when canceling constants in constants. *)
Global
Instance
nat_cancel_S_both
m
n
m'
n'
:
NatCancel
m
n
m'
n'
→
NatCancel
(
S
m
)
(
S
n
)
m'
n'
|
1
.
Proof
.
unfold
NatCancel
.
omega
.
Qed
.
Global
Instance
nat_cancel_plus
m1
m2
m1'
m2'
m1'm2'
n
n'
n''
:
NatCancel
m1
n
m1'
n'
→
NatCancel
m2
n'
m2'
n''
→
MakeNatPlus
m1'
m2'
m1'm2'
→
NatCancel
(
m1
+
m2
)
n
m1'm2'
n''
|
2
.
Proof
.
unfold
NatCancel
,
MakeNatPlus
.
omega
.
Qed
.
Global
Instance
nat_cancel_S
m
m'
m''
Sm'
n
n'
n''
:
NatCancel
m
n
m'
n'
→
NatCancelLeaf
1
n'
m''
n''
→
MakeNatS
m''
m'
Sm'
→
NatCancel
(
S
m
)
n
Sm'
n''
|
3
.
Proof
.
unfold
NatCancelLeaf
,
NatCancel
,
MakeNatS
.
omega
.
Qed
.
Module
nat_cancel
.
Class
NatCancelL
(
m
n
m'
n'
:
nat
)
:=
nat_cancel_l
:
m'
+
n
=
m
+
n'
.
Hint
Mode
NatCancelL
!
!
-
-
:
typeclass_instances
.
Class
NatCancelR
(
m
n
m'
n'
:
nat
)
:=
nat_cancel_r
:
NatCancelL
m
n
m'
n'
.
Hint
Mode
NatCancelR
!
!
-
-
:
typeclass_instances
.
Existing
Instance
nat_cancel_r
|
100
.
(** The implementation of the canceler is highly non-deterministic, but since
it will always succeed, no backtracking will ever be performed. In order to
avoid issues like:
https://gitlab.mpi-sws.org/FP/iris-coq/issues/153
we wrap the entire canceler in the [NoBackTrack] class. *)
Instance
nat_cancel_start
m
n
m'
n'
:
NoBackTrack
(
NatCancelL
m
n
m'
n'
)
→
NatCancel
m
n
m'
n'
.
Proof
.
by
intros
[?]
.
Qed
.
Class
MakeNatS
(
n1
n2
m
:
nat
)
:=
make_nat_S
:
m
=
n1
+
n2
.
Instance
make_nat_S_0_l
n
:
MakeNatS
0
n
n
.
Proof
.
done
.
Qed
.
Instance
make_nat_S_1
n
:
MakeNatS
1
n
(
S
n
)
.
Proof
.
done
.
Qed
.
Class
MakeNatPlus
(
n1
n2
m
:
nat
)
:=
make_nat_plus
:
m
=
n1
+
n2
.
Instance
make_nat_plus_0_l
n
:
MakeNatPlus
0
n
n
.
Proof
.
done
.
Qed
.
Instance
make_nat_plus_0_r
n
:
MakeNatPlus
n
0
n
.
Proof
.
unfold
MakeNatPlus
.
by
rewrite
Nat
.
add_0_r
.
Qed
.
Instance
make_nat_plus_default
n1
n2
:
MakeNatPlus
n1
n2
(
n1
+
n2
)
|
100
.
Proof
.
done
.
Qed
.
Instance
nat_cancel_leaf_here
m
:
NatCancelR
m
m
0
0
|
0
.
Proof
.
by
unfold
NatCancelR
,
NatCancelL
.
Qed
.
Instance
nat_cancel_leaf_else
m
n
:
NatCancelR
m
n
m
n
|
100
.
Proof
.
by
unfold
NatCancelR
.
Qed
.
Instance
nat_cancel_leaf_plus
m
m'
m''
n1
n2
n1'
n2'
n1'n2'
:
NatCancelR
m
n1
m'
n1'
→
NatCancelR
m'
n2
m''
n2'
→
MakeNatPlus
n1'
n2'
n1'n2'
→
NatCancelR
m
(
n1
+
n2
)
m''
n1'n2'
|
2
.
Proof
.
unfold
NatCancelR
,
NatCancelL
,
MakeNatPlus
.
omega
.
Qed
.
Instance
nat_cancel_leaf_S_here
m
n
m'
n'
:
NatCancelR
m
n
m'
n'
→
NatCancelR
(
S
m
)
(
S
n
)
m'
n'
|
3
.
Proof
.
unfold
NatCancelR
,
NatCancelL
.
omega
.
Qed
.
Instance
nat_cancel_leaf_S_else
m
n
m'
n'
:
NatCancelR
m
n
m'
n'
→
NatCancelR
m
(
S
n
)
m'
(
S
n'
)
|
4
.
Proof
.
unfold
NatCancelR
,
NatCancelL
.
omega
.
Qed
.
(** The instance [nat_cancel_S_both] is redundant, but may reduce proof search
quite a bit, e.g. when canceling constants in constants. *)
Instance
nat_cancel_S_both
m
n
m'
n'
:
NatCancelL
m
n
m'
n'
→
NatCancelL
(
S
m
)
(
S
n
)
m'
n'
|
1
.
Proof
.
unfold
NatCancelL
.
omega
.
Qed
.
Instance
nat_cancel_plus
m1
m2
m1'
m2'
m1'm2'
n
n'
n''
:
NatCancelL
m1
n
m1'
n'
→
NatCancelL
m2
n'
m2'
n''
→
MakeNatPlus
m1'
m2'
m1'm2'
→
NatCancelL
(
m1
+
m2
)
n
m1'm2'
n''
|
2
.
Proof
.
unfold
NatCancelL
,
MakeNatPlus
.
omega
.
Qed
.
Instance
nat_cancel_S
m
m'
m''
Sm'
n
n'
n''
:
NatCancelL
m
n
m'
n'
→
NatCancelR
1
n'
m''
n''
→
MakeNatS
m''
m'
Sm'
→
NatCancelL
(
S
m
)
n
Sm'
n''
|
3
.
Proof
.
unfold
NatCancelR
,
NatCancelL
,
MakeNatS
.
omega
.
Qed
.
End
nat_cancel
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment