Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gregory Malecha
stdpp
Commits
a8e9b673
Commit
a8e9b673
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Plain Diff
Merge branch 'gmultiset_lemmas' into 'master'
gmultiset lemmas See merge request
iris/stdpp!65
parents
d98ab4e4
812f01bf
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
theories/fin_sets.v
+24
-0
24 additions, 0 deletions
theories/fin_sets.v
theories/gmultiset.v
+30
-4
30 additions, 4 deletions
theories/gmultiset.v
theories/list.v
+10
-0
10 additions, 0 deletions
theories/list.v
with
64 additions
and
4 deletions
theories/fin_sets.v
+
24
−
0
View file @
a8e9b673
...
@@ -101,6 +101,14 @@ Proof.
...
@@ -101,6 +101,14 @@ Proof.
apply
Permutation_singleton
.
by
rewrite
<-
(
right_id
∅
(
∪
)
{[
x
]}),
apply
Permutation_singleton
.
by
rewrite
<-
(
right_id
∅
(
∪
)
{[
x
]}),
elements_union_singleton
,
elements_empty
by
set_solver
.
elements_union_singleton
,
elements_empty
by
set_solver
.
Qed
.
Qed
.
Lemma
elements_disj_union
(
X
Y
:
C
)
:
X
##
Y
→
elements
(
X
∪
Y
)
≡
ₚ
elements
X
++
elements
Y
.
Proof
.
intros
HXY
.
apply
NoDup_Permutation
.
-
apply
NoDup_elements
.
-
apply
NoDup_app
.
set_solver
by
eauto
using
NoDup_elements
.
-
set_solver
.
Qed
.
Lemma
elements_submseteq
X
Y
:
X
⊆
Y
→
elements
X
⊆+
elements
Y
.
Lemma
elements_submseteq
X
Y
:
X
⊆
Y
→
elements
X
⊆+
elements
Y
.
Proof
.
Proof
.
intros
;
apply
NoDup_submseteq
;
eauto
using
NoDup_elements
.
intros
;
apply
NoDup_submseteq
;
eauto
using
NoDup_elements
.
...
@@ -222,6 +230,22 @@ Lemma set_fold_proper {B} (R : relation B) `{!Equivalence R}
...
@@ -222,6 +230,22 @@ Lemma set_fold_proper {B} (R : relation B) `{!Equivalence R}
Proper
((
≡
)
==>
R
)
(
set_fold
f
b
:
C
→
B
)
.
Proper
((
≡
)
==>
R
)
(
set_fold
f
b
:
C
→
B
)
.
Proof
.
intros
??
E
.
apply
(
foldr_permutation
R
f
b
);
auto
.
by
rewrite
E
.
Qed
.
Proof
.
intros
??
E
.
apply
(
foldr_permutation
R
f
b
);
auto
.
by
rewrite
E
.
Qed
.
Lemma
set_fold_empty
{
B
}
(
f
:
A
→
B
→
B
)
(
b
:
B
)
:
set_fold
f
b
(
∅
:
C
)
=
b
.
Proof
.
by
unfold
set_fold
;
simpl
;
rewrite
elements_empty
.
Qed
.
Lemma
set_fold_singleton
{
B
}
(
f
:
A
→
B
→
B
)
(
b
:
B
)
(
a
:
A
)
:
set_fold
f
b
({[
a
]}
:
C
)
=
f
a
b
.
Proof
.
by
unfold
set_fold
;
simpl
;
rewrite
elements_singleton
.
Qed
.
Lemma
set_fold_disj_union
(
f
:
A
→
A
→
A
)
(
b
:
A
)
X
Y
:
Comm
(
=
)
f
→
Assoc
(
=
)
f
→
X
##
Y
→
set_fold
f
b
(
X
∪
Y
)
=
set_fold
f
(
set_fold
f
b
X
)
Y
.
Proof
.
intros
Hcomm
Hassoc
Hdisj
.
unfold
set_fold
;
simpl
.
by
rewrite
elements_disj_union
,
<-
foldr_app
,
(
comm
(
++
))
.
Qed
.
(** * Minimal elements *)
(** * Minimal elements *)
Lemma
minimal_exists
R
`{
!
Transitive
R
,
∀
x
y
,
Decision
(
R
x
y
)}
(
X
:
C
)
:
Lemma
minimal_exists
R
`{
!
Transitive
R
,
∀
x
y
,
Decision
(
R
x
y
)}
(
X
:
C
)
:
X
≢
∅
→
∃
x
,
x
∈
X
∧
minimal
R
x
X
.
X
≢
∅
→
∃
x
,
x
∈
X
∧
minimal
R
x
X
.
...
...
This diff is collapsed.
Click to expand it.
theories/gmultiset.v
+
30
−
4
View file @
a8e9b673
...
@@ -330,7 +330,23 @@ Proof.
...
@@ -330,7 +330,23 @@ Proof.
destruct
(
X
!!
x
);
naive_solver
lia
.
destruct
(
X
!!
x
);
naive_solver
lia
.
Qed
.
Qed
.
(* Properties of the size operation *)
(** Properties of the set_fold operation *)
Lemma
gmultiset_set_fold_empty
{
B
}
(
f
:
A
→
B
→
B
)
(
b
:
B
)
:
set_fold
f
b
(
∅
:
gmultiset
A
)
=
b
.
Proof
.
by
unfold
set_fold
;
simpl
;
rewrite
gmultiset_elements_empty
.
Qed
.
Lemma
gmultiset_set_fold_singleton
{
B
}
(
f
:
A
→
B
→
B
)
(
b
:
B
)
(
a
:
A
)
:
set_fold
f
b
({[
a
]}
:
gmultiset
A
)
=
f
a
b
.
Proof
.
by
unfold
set_fold
;
simpl
;
rewrite
gmultiset_elements_singleton
.
Qed
.
Lemma
gmultiset_set_fold_disj_union
(
f
:
A
→
A
→
A
)
(
b
:
A
)
X
Y
:
Comm
(
=
)
f
→
Assoc
(
=
)
f
→
set_fold
f
b
(
X
⊎
Y
)
=
set_fold
f
(
set_fold
f
b
X
)
Y
.
Proof
.
intros
Hcomm
Hassoc
.
unfold
set_fold
;
simpl
.
by
rewrite
gmultiset_elements_disj_union
,
<-
foldr_app
,
(
comm
(
++
))
.
Qed
.
(** Properties of the size operation *)
Lemma
gmultiset_size_empty
:
size
(
∅
:
gmultiset
A
)
=
0
.
Lemma
gmultiset_size_empty
:
size
(
∅
:
gmultiset
A
)
=
0
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
gmultiset_size_empty_inv
X
:
size
X
=
0
→
X
=
∅.
Lemma
gmultiset_size_empty_inv
X
:
size
X
=
0
→
X
=
∅.
...
@@ -370,7 +386,7 @@ Proof.
...
@@ -370,7 +386,7 @@ Proof.
by
rewrite
gmultiset_elements_disj_union
,
app_length
.
by
rewrite
gmultiset_elements_disj_union
,
app_length
.
Qed
.
Qed
.
(* Order stuff *)
(*
*
Order stuff *)
Global
Instance
gmultiset_po
:
PartialOrder
(
⊆@
{
gmultiset
A
})
.
Global
Instance
gmultiset_po
:
PartialOrder
(
⊆@
{
gmultiset
A
})
.
Proof
.
Proof
.
split
;
[
split
|]
.
split
;
[
split
|]
.
...
@@ -464,6 +480,13 @@ Proof.
...
@@ -464,6 +480,13 @@ Proof.
rewrite
HX
at
2
;
rewrite
gmultiset_size_disj_union
.
lia
.
rewrite
HX
at
2
;
rewrite
gmultiset_size_disj_union
.
lia
.
Qed
.
Qed
.
Lemma
gmultiset_empty_difference
X
Y
:
Y
⊆
X
→
Y
∖
X
=
∅.
Proof
.
intros
HYX
.
unfold_leibniz
.
intros
x
.
rewrite
multiplicity_difference
,
multiplicity_empty
.
specialize
(
HYX
x
)
.
lia
.
Qed
.
Lemma
gmultiset_non_empty_difference
X
Y
:
X
⊂
Y
→
Y
∖
X
≠
∅.
Lemma
gmultiset_non_empty_difference
X
Y
:
X
⊂
Y
→
Y
∖
X
≠
∅.
Proof
.
Proof
.
intros
[_
HXY2
]
Hdiff
;
destruct
HXY2
;
intros
x
.
intros
[_
HXY2
]
Hdiff
;
destruct
HXY2
;
intros
x
.
...
@@ -471,13 +494,16 @@ Proof.
...
@@ -471,13 +494,16 @@ Proof.
rewrite
multiplicity_difference
,
multiplicity_empty
;
lia
.
rewrite
multiplicity_difference
,
multiplicity_empty
;
lia
.
Qed
.
Qed
.
Lemma
gmultiset_difference_diag
X
:
X
∖
X
=
∅.
Proof
.
by
apply
gmultiset_empty_difference
.
Qed
.
Lemma
gmultiset_difference_subset
X
Y
:
X
≠
∅
→
X
⊆
Y
→
Y
∖
X
⊂
Y
.
Lemma
gmultiset_difference_subset
X
Y
:
X
≠
∅
→
X
⊆
Y
→
Y
∖
X
⊂
Y
.
Proof
.
Proof
.
intros
.
eapply
strict_transitive_l
;
[
by
apply
gmultiset_union_subset_r
|]
.
intros
.
eapply
strict_transitive_l
;
[
by
apply
gmultiset_union_subset_r
|]
.
by
rewrite
<-
(
gmultiset_disj_union_difference
X
Y
)
.
by
rewrite
<-
(
gmultiset_disj_union_difference
X
Y
)
.
Qed
.
Qed
.
(* Mononicity *)
(*
*
Mononicity *)
Lemma
gmultiset_elements_submseteq
X
Y
:
X
⊆
Y
→
elements
X
⊆+
elements
Y
.
Lemma
gmultiset_elements_submseteq
X
Y
:
X
⊆
Y
→
elements
X
⊆+
elements
Y
.
Proof
.
Proof
.
intros
->%
gmultiset_disj_union_difference
.
rewrite
gmultiset_elements_disj_union
.
intros
->%
gmultiset_disj_union_difference
.
rewrite
gmultiset_elements_disj_union
.
...
@@ -495,7 +521,7 @@ Proof.
...
@@ -495,7 +521,7 @@ Proof.
gmultiset_size_disj_union
by
auto
.
lia
.
gmultiset_size_disj_union
by
auto
.
lia
.
Qed
.
Qed
.
(* Well-foundedness *)
(*
*
Well-foundedness *)
Lemma
gmultiset_wf
:
wf
(
⊂@
{
gmultiset
A
})
.
Lemma
gmultiset_wf
:
wf
(
⊂@
{
gmultiset
A
})
.
Proof
.
Proof
.
apply
(
wf_projected
(
<
)
size
);
auto
using
gmultiset_subset_size
,
lt_wf
.
apply
(
wf_projected
(
<
)
size
);
auto
using
gmultiset_subset_size
,
lt_wf
.
...
...
This diff is collapsed.
Click to expand it.
theories/list.v
+
10
−
0
View file @
a8e9b673
...
@@ -3446,6 +3446,16 @@ Lemma foldr_permutation_proper {A B} (R : relation B) `{!PreOrder R}
...
@@ -3446,6 +3446,16 @@ Lemma foldr_permutation_proper {A B} (R : relation B) `{!PreOrder R}
(
Hf
:
∀
a1
a2
b
,
R
(
f
a1
(
f
a2
b
))
(
f
a2
(
f
a1
b
)))
:
(
Hf
:
∀
a1
a2
b
,
R
(
f
a1
(
f
a2
b
))
(
f
a2
(
f
a1
b
)))
:
Proper
((
≡
ₚ
)
==>
R
)
(
foldr
f
b
)
.
Proper
((
≡
ₚ
)
==>
R
)
(
foldr
f
b
)
.
Proof
.
intros
l1
l2
Hl
.
apply
foldr_permutation
;
auto
.
Qed
.
Proof
.
intros
l1
l2
Hl
.
apply
foldr_permutation
;
auto
.
Qed
.
Instance
foldr_permutation_proper'
{
A
}
(
R
:
relation
A
)
`{
!
PreOrder
R
}
(
f
:
A
→
A
→
A
)
(
a
:
A
)
`{
!∀
a
,
Proper
(
R
==>
R
)
(
f
a
),
!
Assoc
R
f
,
!
Comm
R
f
}
:
Proper
((
≡
ₚ
)
==>
R
)
(
foldr
f
a
)
.
Proof
.
apply
(
foldr_permutation_proper
R
f
);
[
solve_proper
|]
.
assert
(
Proper
(
R
==>
R
==>
R
)
f
)
.
{
intros
a1
a2
Ha
b1
b2
Hb
.
by
rewrite
Hb
,
(
comm
f
a1
),
Ha
,
(
comm
f
)
.
}
intros
a1
a2
b
.
by
rewrite
(
assoc
f
),
(
comm
f
_
b
),
(
assoc
f
),
(
comm
f
b
),
(
comm
f
_
a2
)
.
Qed
.
(** ** Properties of the [zip_with] and [zip] functions *)
(** ** Properties of the [zip_with] and [zip] functions *)
Section
zip_with
.
Section
zip_with
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment