Newer
Older
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Export list.
Instance error_ret {E} : MRet (sum E) := λ A, inr.
Instance error_bind {E} : MBind (sum E) := λ A B f x,
match x with inr a => f a | inl e => inl e end.
Instance error_fmap {E} : FMap (sum E) := λ A B f x,
match x with inr a => inr (f a) | inl e => inl e end.
Definition error_guard {E} P {dec : Decision P} {A}
(e : E) (f : P → E + A) : E + A :=
match decide P with left H => f H | right _ => inl e end.
Notation "'guard' P 'with' e ; o" := (error_guard P e (λ _, o))
(at level 65, next at level 35, only parsing, right associativity) : C_scope.
Definition error_of_option {A E} (x : option A) (e : E) : sum E A :=
match x with Some a => inr a | None => inl e end.
Lemma bind_inr {A B E} (f : A → E + B) x b :
x ≫= f = inr b ↔ ∃ a, x = inr a ∧ f a = inr b.
Proof. destruct x; naive_solver. Qed.
Lemma fmap_inr {A B E} (f : A → B) (x : E + A) b :
f <$> x = inr b ↔ ∃ a, x = inr a ∧ f a = b.
Proof. destruct x; naive_solver. Qed.
Lemma error_of_option_inr {A E} (o : option A) (e : E) a :
error_of_option o e = inr a ↔ o = Some a.
Proof. destruct o; naive_solver. Qed.
Tactic Notation "case_error_guard" "as" ident(Hx) :=
match goal with
| H : context C [@error_guard _ ?P ?dec _ ?e ?x] |- _ =>
let X := context C [ match dec with left H => x H | _ => inl e end ] in
change X in H; destruct_decide dec as Hx
| |- context C [@error_guard _ ?P ?dec _ ?e ?x] =>
let X := context C [ match dec with left H => x H | _ => inl e end ] in
change X; destruct_decide dec as Hx
end.
Tactic Notation "case_error_guard" :=
let H := fresh in case_error_guard as H.
Tactic Notation "simplify_error_equality" :=
repeat match goal with
| _ => progress simplify_equality'
| H : appcontext [@mret (sum ?E) _ ?A] |- _ =>
change (@mret (sum E) _ A) with (@inr E A) in H
| |- appcontext [@mret (sum ?E) _ ?A] => change (@mret _ _ A) with (@inr E A)
| _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
| _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
| _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
| _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
| H : error_of_option ?o ?e = ?x |- _ => apply error_of_option_inr in H
apply bind_inr in H; destruct H as (?&?&?)
apply fmap_inr in H; destruct H as (?&?&?)
| H : mbind (M:=option) ?f ?o = ?x |- _ =>
apply bind_Some in H; destruct H as (?&?&?)
| H : fmap (M:=option) ?f ?o = ?x |- _ =>
apply fmap_Some in H; destruct H as (?&?&?)
| _ => progress case_decide
| _ => progress case_error_guard
| _ => progress case_option_guard
end.
Section mapM.
Context {A B E : Type} (f : A → E + B).
Lemma error_mapM_ext (g : A → sum E B) l :
(∀ x, f x = g x) → mapM f l = mapM g l.
Proof. intros Hfg. by induction l; simpl; rewrite ?Hfg, ?IHl. Qed.
Lemma error_Forall2_mapM_ext (g : A → E + B) l k :
Forall2 (λ x y, f x = g y) l k → mapM f l = mapM g k.
Proof. induction 1 as [|???? Hfg ? IH]; simpl. done. by rewrite Hfg, IH. Qed.
Lemma error_Forall_mapM_ext (g : A → E + B) l :
Forall (λ x, f x = g x) l → mapM f l = mapM g l.
Proof. induction 1 as [|?? Hfg ? IH]; simpl. done. by rewrite Hfg, IH. Qed.
Lemma mapM_inr_1 l k : mapM f l = inr k → Forall2 (λ x y, f x = inr y) l k.
Proof.
revert k. induction l as [|x l]; intros [|y k]; simpl; try done.
* destruct (f x); simpl; [discriminate|]. by destruct (mapM f l).
* destruct (f x) eqn:?; intros; simplify_error_equality; auto.
Qed.
Lemma mapM_inr_2 l k : Forall2 (λ x y, f x = inr y) l k → mapM f l = inr k.
Proof.
induction 1 as [|???? Hf ? IH]; simpl; [done |].
rewrite Hf. simpl. by rewrite IH.
Qed.
Lemma mapM_inr l k : mapM f l = inr k ↔ Forall2 (λ x y, f x = inr y) l k.
Proof. split; auto using mapM_inr_1, mapM_inr_2. Qed.
Lemma error_mapM_length l k : mapM f l = inr k → length l = length k.
Proof. intros. by eapply Forall2_length, mapM_inr_1. Qed.
End mapM.