Skip to content
Snippets Groups Projects
Commit 37e95231 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Rename solve_elem_of into set_solver.

It is doing much more than just dealing with ∈, it solves all kinds
of goals involving set operations (including ≡ and ⊆).
parent 20690605
No related branches found
No related tags found
No related merge requests found
......@@ -207,7 +207,7 @@ Ltac decompose_empty := repeat
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
Ltac unfold_elem_of :=
Ltac set_unfold :=
repeat_on_hyps (fun H =>
repeat match type of H with
| context [ _ _ ] => setoid_rewrite elem_of_subseteq in H
......@@ -251,21 +251,21 @@ Ltac unfold_elem_of :=
end.
(** Since [firstorder] fails or loops on very small goals generated by
[solve_elem_of] already. We use the [naive_solver] tactic as a substitute.
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "solve_elem_of" tactic3(tac) :=
Tactic Notation "set_solver" tactic3(tac) :=
setoid_subst;
decompose_empty;
unfold_elem_of;
set_unfold;
naive_solver tac.
Tactic Notation "solve_elem_of" "-" hyp_list(Hs) "/" tactic3(tac) :=
clear Hs; solve_elem_of tac.
Tactic Notation "solve_elem_of" "+" hyp_list(Hs) "/" tactic3(tac) :=
revert Hs; clear; solve_elem_of tac.
Tactic Notation "solve_elem_of" := solve_elem_of eauto.
Tactic Notation "solve_elem_of" "-" hyp_list(Hs) := clear Hs; solve_elem_of.
Tactic Notation "solve_elem_of" "+" hyp_list(Hs) :=
revert Hs; clear; solve_elem_of.
Tactic Notation "set_solver" "-" hyp_list(Hs) "/" tactic3(tac) :=
clear Hs; set_solver tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "/" tactic3(tac) :=
revert Hs; clear; set_solver tac.
Tactic Notation "set_solver" := set_solver eauto.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) :=
revert Hs; clear; set_solver.
(** * More theorems *)
Section collection.
......@@ -273,7 +273,7 @@ Section collection.
Implicit Types X Y : C.
Global Instance: Lattice C.
Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
Proof. split. apply _. firstorder auto. set_solver. Qed.
Global Instance difference_proper :
Proper (() ==> () ==> ()) (@difference C _).
Proof.
......@@ -281,23 +281,23 @@ Section collection.
by rewrite !elem_of_difference, HX, HY.
Qed.
Lemma non_empty_inhabited x X : x X X ∅.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma intersection_singletons x : ({[x]} : C) {[x]} {[x]}.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma difference_twice X Y : (X Y) Y X Y.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma subseteq_empty_difference X Y : X Y X Y ∅.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma difference_diag X : X X ∅.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma difference_union_distr_l X Y Z : (X Y) Z X Z Y Z.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma difference_union_distr_r X Y Z : Z (X Y) (Z X) (Z Y).
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma difference_intersection_distr_l X Y Z : (X Y) Z X Z Y Z.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma disjoint_union_difference X Y : X Y (X Y) X Y.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
......@@ -334,10 +334,10 @@ Section collection.
Lemma non_empty_difference X Y : X Y Y X ∅.
Proof.
intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
destruct (decide (x X)); solve_elem_of.
destruct (decide (x X)); set_solver.
Qed.
Lemma empty_difference_subseteq X Y : X Y X Y.
Proof. intros ? x ?; apply dec_stable; solve_elem_of. Qed.
Proof. intros ? x ?; apply dec_stable; set_solver. Qed.
Context `{!LeibnizEquiv C}.
Lemma union_difference_L X Y : X Y Y = X Y X.
Proof. unfold_leibniz. apply union_difference. Qed.
......@@ -396,33 +396,33 @@ Section NoDup.
Proof. firstorder. Qed.
Lemma elem_of_upto_elem_of x X : x X elem_of_upto x X.
Proof. unfold elem_of_upto. solve_elem_of. Qed.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma elem_of_upto_empty x : ¬elem_of_upto x ∅.
Proof. unfold elem_of_upto. solve_elem_of. Qed.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]} R x y.
Proof. unfold elem_of_upto. solve_elem_of. Qed.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma elem_of_upto_union X Y x :
elem_of_upto x (X Y) elem_of_upto x X elem_of_upto x Y.
Proof. unfold elem_of_upto. solve_elem_of. Qed.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma not_elem_of_upto x X : ¬elem_of_upto x X y, y X ¬R x y.
Proof. unfold elem_of_upto. solve_elem_of. Qed.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma set_NoDup_empty: set_NoDup ∅.
Proof. unfold set_NoDup. solve_elem_of. Qed.
Proof. unfold set_NoDup. set_solver. Qed.
Lemma set_NoDup_add x X :
¬elem_of_upto x X set_NoDup X set_NoDup ({[ x ]} X).
Proof. unfold set_NoDup, elem_of_upto. solve_elem_of. Qed.
Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
Lemma set_NoDup_inv_add x X :
x X set_NoDup ({[ x ]} X) ¬elem_of_upto x X.
Proof.
intros Hin Hnodup [y [??]].
rewrite (Hnodup x y) in Hin; solve_elem_of.
rewrite (Hnodup x y) in Hin; set_solver.
Qed.
Lemma set_NoDup_inv_union_l X Y : set_NoDup (X Y) set_NoDup X.
Proof. unfold set_NoDup. solve_elem_of. Qed.
Proof. unfold set_NoDup. set_solver. Qed.
Lemma set_NoDup_inv_union_r X Y : set_NoDup (X Y) set_NoDup Y.
Proof. unfold set_NoDup. solve_elem_of. Qed.
Proof. unfold set_NoDup. set_solver. Qed.
End NoDup.
(** * Quantifiers *)
......@@ -433,27 +433,27 @@ Section quantifiers.
Definition set_Exists X := x, x X P x.
Lemma set_Forall_empty : set_Forall ∅.
Proof. unfold set_Forall. solve_elem_of. Qed.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_singleton x : set_Forall {[ x ]} P x.
Proof. unfold set_Forall. solve_elem_of. Qed.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_union X Y : set_Forall X set_Forall Y set_Forall (X Y).
Proof. unfold set_Forall. solve_elem_of. Qed.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_union_inv_1 X Y : set_Forall (X Y) set_Forall X.
Proof. unfold set_Forall. solve_elem_of. Qed.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_union_inv_2 X Y : set_Forall (X Y) set_Forall Y.
Proof. unfold set_Forall. solve_elem_of. Qed.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Exists_empty : ¬set_Exists ∅.
Proof. unfold set_Exists. solve_elem_of. Qed.
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_singleton x : set_Exists {[ x ]} P x.
Proof. unfold set_Exists. solve_elem_of. Qed.
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_union_1 X Y : set_Exists X set_Exists (X Y).
Proof. unfold set_Exists. solve_elem_of. Qed.
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_union_2 X Y : set_Exists Y set_Exists (X Y).
Proof. unfold set_Exists. solve_elem_of. Qed.
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_union_inv X Y :
set_Exists (X Y) set_Exists X set_Exists Y.
Proof. unfold set_Exists. solve_elem_of. Qed.
Proof. unfold set_Exists. set_solver. Qed.
End quantifiers.
Section more_quantifiers.
......@@ -510,7 +510,7 @@ Section fresh.
Qed.
Lemma Forall_fresh_subseteq X Y xs :
Forall_fresh X xs Y X Forall_fresh Y xs.
Proof. rewrite !Forall_fresh_alt; solve_elem_of. Qed.
Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
Lemma fresh_list_length n X : length (fresh_list n X) = n.
Proof. revert X. induction n; simpl; auto. Qed.
......@@ -518,12 +518,12 @@ Section fresh.
Proof.
revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
apply IH in Hin; solve_elem_of.
apply IH in Hin; set_solver.
Qed.
Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
Proof.
revert X. induction n; simpl; constructor; auto.
intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
Qed.
Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
Proof.
......@@ -537,50 +537,50 @@ Section collection_monad.
Global Instance collection_fmap_mono {A B} :
Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
Proof. intros f g ? X Y ?; solve_elem_of. Qed.
Proof. intros f g ? X Y ?; set_solver. Qed.
Global Instance collection_fmap_proper {A B} :
Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
Proof. intros f g ? X Y [??]; split; solve_elem_of. Qed.
Proof. intros f g ? X Y [??]; split; set_solver. Qed.
Global Instance collection_bind_mono {A B} :
Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
Proof. unfold respectful; intros f g Hfg X Y ?; solve_elem_of. Qed.
Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
Global Instance collection_bind_proper {A B} :
Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
Proof. unfold respectful; intros f g Hfg X Y [??]; split; solve_elem_of. Qed.
Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
Global Instance collection_join_mono {A} :
Proper (() ==> ()) (@mjoin M _ A).
Proof. intros X Y ?; solve_elem_of. Qed.
Proof. intros X Y ?; set_solver. Qed.
Global Instance collection_join_proper {A} :
Proper (() ==> ()) (@mjoin M _ A).
Proof. intros X Y [??]; split; solve_elem_of. Qed.
Proof. intros X Y [??]; split; set_solver. Qed.
Lemma collection_bind_singleton {A B} (f : A M B) x : {[ x ]} ≫= f f x.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma collection_guard_True {A} `{Decision P} (X : M A) : P guard P; X X.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma collection_fmap_compose {A B C} (f : A B) (g : B C) (X : M A) :
g f <$> X g <$> (f <$> X).
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma elem_of_fmap_1 {A B} (f : A B) (X : M A) (y : B) :
y f <$> X x, y = f x x X.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma elem_of_fmap_2 {A B} (f : A B) (X : M A) (x : A) :
x X f x f <$> X.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma elem_of_fmap_2_alt {A B} (f : A B) (X : M A) (x : A) (y : B) :
x X y = f x y f <$> X.
Proof. solve_elem_of. Qed.
Proof. set_solver. Qed.
Lemma elem_of_mapM {A B} (f : A M B) l k :
l mapM f k Forall2 (λ x y, x f y) l k.
Proof.
split.
- revert l. induction k; solve_elem_of.
- induction 1; solve_elem_of.
- revert l. induction k; set_solver.
- induction 1; set_solver.
Qed.
Lemma collection_mapM_length {A B} (f : A M B) l k :
l mapM f k length l = length k.
Proof. revert l; induction k; solve_elem_of. Qed.
Proof. revert l; induction k; set_solver. Qed.
Lemma elem_of_mapM_fmap {A B} (f : A B) (g : B M A) l k :
Forall (λ x, y, y g x f y = x) l k mapM g l fmap f k = l.
Proof.
......@@ -606,7 +606,7 @@ Section finite.
Context `{SimpleCollection A B}.
Global Instance set_finite_subseteq :
Proper (flip () ==> impl) (@set_finite A B _).
Proof. intros X Y HX [l Hl]; exists l; solve_elem_of. Qed.
Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
Lemma empty_finite : set_finite ∅.
......@@ -619,9 +619,9 @@ Section finite.
rewrite elem_of_union, elem_of_app; naive_solver.
Qed.
Lemma union_finite_inv_l X Y : set_finite (X Y) set_finite X.
Proof. intros [l ?]; exists l; solve_elem_of. Qed.
Proof. intros [l ?]; exists l; set_solver. Qed.
Lemma union_finite_inv_r X Y : set_finite (X Y) set_finite Y.
Proof. intros [l ?]; exists l; solve_elem_of. Qed.
Proof. intros [l ?]; exists l; set_solver. Qed.
End finite.
Section more_finite.
......@@ -636,6 +636,6 @@ Section more_finite.
set_finite Y set_finite (X Y) set_finite X.
Proof.
intros [l ?] [k ?]; exists (l ++ k).
intros x ?; destruct (decide (x Y)); rewrite elem_of_app; solve_elem_of.
intros x ?; destruct (decide (x Y)); rewrite elem_of_app; set_solver.
Qed.
End more_finite.
......@@ -41,7 +41,7 @@ Qed.
Lemma elements_singleton x : elements {[ x ]} = [x].
Proof.
apply Permutation_singleton. by rewrite <-(right_id () {[x]}),
elements_union_singleton, elements_empty by solve_elem_of.
elements_union_singleton, elements_empty by set_solver.
Qed.
Lemma elements_contains X Y : X Y elements X `contains` elements Y.
Proof.
......@@ -90,7 +90,7 @@ Proof.
intros E. destruct (size_pos_elem_of X); auto with lia.
exists x. apply elem_of_equiv. split.
- rewrite elem_of_singleton. eauto using size_singleton_inv.
- solve_elem_of.
- set_solver.
Qed.
Lemma size_union X Y : X Y size (X Y) = size X + size Y.
Proof.
......@@ -98,7 +98,7 @@ Proof.
apply Permutation_length, NoDup_Permutation.
- apply NoDup_elements.
- apply NoDup_app; repeat split; try apply NoDup_elements.
intros x; rewrite !elem_of_elements; solve_elem_of.
intros x; rewrite !elem_of_elements; set_solver.
- intros. by rewrite elem_of_app, !elem_of_elements, elem_of_union.
Qed.
Instance elem_of_dec_slow (x : A) (X : C) : Decision (x X) | 100.
......@@ -121,15 +121,15 @@ Next Obligation.
Qed.
Lemma size_union_alt X Y : size (X Y) = size X + size (Y X).
Proof.
rewrite <-size_union by solve_elem_of.
setoid_replace (Y X) with ((Y X) X) by solve_elem_of.
rewrite <-union_difference, (comm ()); solve_elem_of.
rewrite <-size_union by set_solver.
setoid_replace (Y X) with ((Y X) X) by set_solver.
rewrite <-union_difference, (comm ()); set_solver.
Qed.
Lemma subseteq_size X Y : X Y size X size Y.
Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
Lemma subset_size X Y : X Y size X < size Y.
Proof.
intros. rewrite (union_difference X Y) by solve_elem_of.
intros. rewrite (union_difference X Y) by set_solver.
rewrite size_union_alt, difference_twice.
cut (size (Y X) 0); [lia |].
by apply size_non_empty_iff, non_empty_difference.
......@@ -143,8 +143,8 @@ Proof.
intros ? Hemp Hadd. apply well_founded_induction with ().
{ apply collection_wf. }
intros X IH. destruct (collection_choose_or_empty X) as [[x ?]|HX].
- rewrite (union_difference {[ x ]} X) by solve_elem_of.
apply Hadd. solve_elem_of. apply IH; solve_elem_of.
- rewrite (union_difference {[ x ]} X) by set_solver.
apply Hadd. set_solver. apply IH; set_solver.
- by rewrite HX.
Qed.
Lemma collection_fold_ind {B} (P : B C Prop) (f : A B B) (b : B) :
......@@ -158,10 +158,10 @@ Proof.
symmetry. apply elem_of_elements. }
induction 1 as [|x l ?? IH]; simpl.
- intros X HX. setoid_rewrite elem_of_nil in HX.
rewrite equiv_empty. done. solve_elem_of.
rewrite equiv_empty. done. set_solver.
- intros X HX. setoid_rewrite elem_of_cons in HX.
rewrite (union_difference {[ x ]} X) by solve_elem_of.
apply Hadd. solve_elem_of. apply IH. solve_elem_of.
rewrite (union_difference {[ x ]} X) by set_solver.
apply Hadd. set_solver. apply IH. set_solver.
Qed.
Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
(f : A B B) (b : B) `{!Proper ((=) ==> R ==> R) f}
......
......@@ -36,13 +36,13 @@ Proof.
Qed.
Lemma dom_empty {A} : dom D (@empty (M A) _) ∅.
Proof.
split; intro; [|solve_elem_of].
split; intro; [|set_solver].
rewrite elem_of_dom, lookup_empty. by inversion 1.
Qed.
Lemma dom_empty_inv {A} (m : M A) : dom D m m = ∅.
Proof.
intros E. apply map_empty. intros. apply not_elem_of_dom.
rewrite E. solve_elem_of.
rewrite E. set_solver.
Qed.
Lemma dom_alter {A} f (m : M A) i : dom D (alter f i m) dom D m.
Proof.
......@@ -54,19 +54,19 @@ Lemma dom_insert {A} (m : M A) i x : dom D (<[i:=x]>m) ≡ {[ i ]} ∪ dom D m.
Proof.
apply elem_of_equiv. intros j. rewrite elem_of_union, !elem_of_dom.
unfold is_Some. setoid_rewrite lookup_insert_Some.
destruct (decide (i = j)); solve_elem_of.
destruct (decide (i = j)); set_solver.
Qed.
Lemma dom_insert_subseteq {A} (m : M A) i x : dom D m dom D (<[i:=x]>m).
Proof. rewrite (dom_insert _). solve_elem_of. Qed.
Proof. rewrite (dom_insert _). set_solver. Qed.
Lemma dom_insert_subseteq_compat_l {A} (m : M A) i x X :
X dom D m X dom D (<[i:=x]>m).
Proof. intros. transitivity (dom D m); eauto using dom_insert_subseteq. Qed.
Lemma dom_singleton {A} (i : K) (x : A) : dom D {[i := x]} {[ i ]}.
Proof. rewrite <-insert_empty, dom_insert, dom_empty; solve_elem_of. Qed.
Proof. rewrite <-insert_empty, dom_insert, dom_empty; set_solver. Qed.
Lemma dom_delete {A} (m : M A) i : dom D (delete i m) dom D m {[ i ]}.
Proof.
apply elem_of_equiv. intros j. rewrite elem_of_difference, !elem_of_dom.
unfold is_Some. setoid_rewrite lookup_delete_Some. solve_elem_of.
unfold is_Some. setoid_rewrite lookup_delete_Some. set_solver.
Qed.
Lemma delete_partial_alter_dom {A} (m : M A) i f :
i dom D m delete i (partial_alter f i m) = m.
......
......@@ -155,7 +155,7 @@ Proof.
- revert x. induction l as [|y l IH]; intros x; simpl.
{ by rewrite elem_of_empty. }
rewrite elem_of_union, elem_of_singleton. intros [->|]; [left|right]; eauto.
- induction 1; solve_elem_of.
- induction 1; set_solver.
Qed.
Lemma NoDup_remove_dups_fast l : NoDup (remove_dups_fast l).
Proof.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment