Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Glen Mével
stdpp
Commits
54954f55
Commit
54954f55
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More countable stuff.
Also, use a different encoding of lists.
parent
e2ebf97f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/countable.v
+67
-57
67 additions, 57 deletions
theories/countable.v
with
67 additions
and
57 deletions
theories/countable.v
+
67
−
57
View file @
54954f55
...
...
@@ -9,6 +9,8 @@ Class Countable A `{∀ x y : A, Decision (x = y)} := {
decode
:
positive
→
option
A
;
decode_encode
x
:
decode
(
encode
x
)
=
Some
x
}
.
Arguments
encode
:
simpl
never
.
Arguments
decode
:
simpl
never
.
Definition
encode_nat
`{
Countable
A
}
(
x
:
A
)
:
nat
:=
pred
(
Pos
.
to_nat
(
encode
x
))
.
...
...
@@ -19,6 +21,8 @@ Proof.
intros
x
y
Hxy
;
apply
(
injective
Some
)
.
by
rewrite
<-
(
decode_encode
x
),
Hxy
,
decode_encode
.
Qed
.
Instance
encode_nat_injective
`{
Countable
A
}
:
Injective
(
=
)
(
=
)
encode_nat
.
Proof
.
unfold
encode_nat
;
intros
x
y
Hxy
;
apply
(
injective
encode
);
lia
.
Qed
.
Lemma
decode_encode_nat
`{
Countable
A
}
x
:
decode_nat
(
encode_nat
x
)
=
Some
x
.
Proof
.
pose
proof
(
Pos2Nat
.
is_pos
(
encode
x
))
.
...
...
@@ -26,6 +30,7 @@ Proof.
by
rewrite
Pos2Nat
.
id
,
decode_encode
.
Qed
.
(** * Choice principles *)
Section
choice
.
Context
`{
Countable
A
}
(
P
:
A
→
Prop
)
`{
∀
x
,
Decision
(
P
x
)}
.
...
...
@@ -33,7 +38,6 @@ Section choice.
|
choose_step_None
{
p
}
:
decode
p
=
None
→
choose_step
(
Psucc
p
)
p
|
choose_step_Some
{
p
x
}
:
decode
p
=
Some
x
→
¬
P
x
→
choose_step
(
Psucc
p
)
p
.
Lemma
choose_step_acc
:
(
∃
x
,
P
x
)
→
Acc
choose_step
1
%
positive
.
Proof
.
intros
[
x
Hx
]
.
cut
(
∀
i
p
,
...
...
@@ -46,13 +50,11 @@ Section choice.
constructor
.
intros
j
.
inversion
1
as
[?
Hd
|?
y
Hd
];
subst
;
auto
with
lia
.
Qed
.
Fixpoint
choose_go
{
i
}
(
acc
:
Acc
choose_step
i
)
:
A
:=
match
Some_dec
(
decode
i
)
with
|
inleft
(
x
↾
Hx
)
=>
match
decide
(
P
x
)
with
|
left
_
=>
x
|
right
H
=>
choose_go
(
Acc_inv
acc
(
choose_step_Some
Hx
H
))
|
left
_
=>
x
|
right
H
=>
choose_go
(
Acc_inv
acc
(
choose_step_Some
Hx
H
))
end
|
inright
H
=>
choose_go
(
Acc_inv
acc
(
choose_step_None
H
))
end
.
...
...
@@ -76,18 +78,18 @@ Proof.
intros
y
.
by
rewrite
(
choose_correct
(
λ
x
,
f
x
=
y
)
(
surjective
f
y
))
.
Qed
.
(** ** Instances *)
(** * Instances *)
(** ** Option *)
Program
Instance
option_countable
`{
Countable
A
}
:
Countable
(
option
A
)
:=
{|
encode
o
:=
match
o
with
None
=>
1
|
Some
x
=>
Pos
.
succ
(
encode
x
)
end
;
decode
p
:=
if
decide
(
p
=
1
)
then
Some
None
else
Some
<$>
decode
(
Pos
.
pred
p
)
encode
o
:=
match
o
with
None
=>
1
|
Some
x
=>
Pos
.
succ
(
encode
x
)
end
;
decode
p
:=
if
decide
(
p
=
1
)
then
Some
None
else
Some
<$>
decode
(
Pos
.
pred
p
)
|}
.
Next
Obligation
.
intros
???
[
x
|];
simpl
;
repeat
case_decide
;
auto
with
lia
.
by
rewrite
Pos
.
pred_succ
,
decode_encode
.
Qed
.
(** ** Sums *)
Program
Instance
sum_countable
`{
Countable
A
}
`{
Countable
B
}
:
Countable
(
A
+
B
)
%
type
:=
{|
encode
xy
:=
...
...
@@ -99,6 +101,7 @@ Program Instance sum_countable `{Countable A} `{Countable B} :
|}
.
Next
Obligation
.
by
intros
??????
[
x
|
y
];
simpl
;
rewrite
decode_encode
.
Qed
.
(** ** Products *)
Fixpoint
prod_encode_fst
(
p
:
positive
)
:
positive
:=
match
p
with
|
1
=>
1
...
...
@@ -162,75 +165,82 @@ Proof.
Qed
.
Program
Instance
prod_countable
`{
Countable
A
}
`{
Countable
B
}
:
Countable
(
A
*
B
)
%
type
:=
{|
encode
xy
:=
let
(
x
,
y
)
:=
xy
in
prod_encode
(
encode
x
)
(
encode
y
);
encode
xy
:=
prod_encode
(
encode
(
xy
.
1
)
)
(
encode
(
xy
.
2
)
);
decode
p
:=
x
←
prod_decode_fst
p
≫=
decode
;
y
←
prod_decode_snd
p
≫=
decode
;
Some
(
x
,
y
)
|}
.
Next
Obligation
.
intros
??????
[
x
y
];
simpl
.
rewrite
prod_decode_encode_fst
,
prod_decode_encode_snd
.
csimpl
.
by
rewrite
!
decode_encode
.
rewrite
prod_decode_encode_fst
,
prod_decode_encode_snd
;
simpl
.
by
rewrite
!
decode_encode
.
Qed
.
Fixpoint
list_encode_
(
l
:
list
positive
)
:
positive
:=
match
l
with
[]
=>
1
|
x
::
l
=>
prod_encode
x
(
list_encode_
l
)
end
.
Definition
list_encode
(
l
:
list
positive
)
:
positive
:=
prod_encode
(
Pos
.
of_nat
(
S
(
length
l
)))
(
list_encode_
l
)
.
Fixpoint
list_decode_
(
n
:
nat
)
(
p
:
positive
)
:
option
(
list
positive
)
:=
match
n
with
|
O
=>
guard
(
p
=
1
);
Some
[]
|
S
n
=>
x
←
prod_decode_fst
p
;
pl
←
prod_decode_snd
p
;
l
←
list_decode_
n
pl
;
Some
(
x
::
l
)
(** ** Lists *)
(* Lists are encoded as 1 separated sequences of 0s corresponding to the unary
representation of the elements. *)
Fixpoint
list_encode
`{
Countable
A
}
(
acc
:
positive
)
(
l
:
list
A
)
:
positive
:=
match
l
with
|
[]
=>
acc
|
x
::
l
=>
list_encode
(
Nat
.
iter
(
encode_nat
x
)
(
~
0
)
(
acc
~
1
))
l
end
.
Definition
list_decode
(
p
:
positive
)
:
option
(
list
positive
)
:=
pn
←
prod_decode_fst
p
;
pl
←
prod_decode_snd
p
;
list_decode_
(
pred
(
Pos
.
to_nat
pn
))
pl
.
Lemma
list_decode_encode
l
:
list_decode
(
list_encode
l
)
=
Some
l
.
Fixpoint
list_decode
`{
Countable
A
}
(
acc
:
list
A
)
(
n
:
nat
)
(
p
:
positive
)
:
option
(
list
A
)
:=
match
p
with
|
1
=>
Some
acc
|
p
~
0
=>
list_decode
acc
(
S
n
)
p
|
p
~
1
=>
x
←
decode_nat
n
;
list_decode
(
x
::
acc
)
O
p
end
.
Lemma
x0_iter_x1
n
acc
:
Nat
.
iter
n
(
~
0
)
acc
~
1
=
acc
++
Nat
.
iter
n
(
~
0
)
3
.
Proof
.
by
induction
n
;
f_equal'
.
Qed
.
Lemma
list_encode_app'
`{
Countable
A
}
(
l1
l2
:
list
A
)
acc
:
list_encode
acc
(
l1
++
l2
)
=
list_encode
acc
l1
++
list_encode
1
l2
.
Proof
.
cut
(
list_decode_
(
length
l
)
(
list_encode_
l
)
=
Some
l
)
.
{
intros
help
.
unfold
list_decode
,
list_encode
.
rewrite
prod_decode_encode_fst
,
prod_decode_encode_snd
;
csimpl
.
by
rewrite
Nat2Pos
.
id
by
done
;
simpl
.
}
induction
l
;
simpl
;
auto
.
by
rewrite
prod_decode_encode_fst
,
prod_decode_encode_snd
;
simplify_option_equality
.
revert
acc
;
induction
l1
;
simpl
;
auto
.
induction
l2
as
[|
x
l
IH
];
intros
acc
;
simpl
;
[
by
rewrite
?(
left_id_L
_
_)|]
.
by
rewrite
!
(
IH
(
Nat
.
iter
_
_
_)),
(
associative_L
_),
x0_iter_x1
.
Qed
.
Program
Instance
list_countable
`{
Countable
A
}
:
Countable
(
list
A
)
:=
{|
encode
l
:=
list_encode
(
encode
<$>
l
);
decode
p
:=
list_decode
p
≫=
mapM
decode
|}
.
Program
Instance
list_countable
`{
Countable
A
}
:
Countable
(
list
A
)
:=
{|
encode
:=
list_encode
1
;
decode
:=
list_decode
[]
0
|}
.
Next
Obligation
.
intros
???
l
;
simpl
;
rewrite
list_decode_encode
;
simpl
.
apply
mapM_fmap_Some
;
auto
using
decode_encode
.
intros
A
??;
simpl
.
assert
(
∀
m
acc
n
p
,
list_decode
acc
n
(
Nat
.
iter
m
(
~
0
)
p
)
=
list_decode
acc
(
n
+
m
)
p
)
as
decode_iter
.
{
induction
m
as
[|
m
IH
];
intros
acc
n
p
;
simpl
;
[
by
rewrite
Nat
.
add_0_r
|]
.
by
rewrite
IH
,
Nat
.
add_succ_r
.
}
cut
(
∀
l
acc
,
list_decode
acc
0
(
list_encode
1
l
)
=
Some
(
l
++
acc
))
%
list
.
{
by
intros
help
l
;
rewrite
help
,
(
right_id_L
_
_)
.
}
induction
l
as
[|
x
l
IH
]
using
@
rev_ind
;
intros
acc
;
[
done
|]
.
rewrite
list_encode_app'
;
simpl
;
rewrite
<-
x0_iter_x1
,
decode_iter
;
simpl
.
by
rewrite
decode_encode_nat
;
simpl
;
rewrite
IH
,
<-
(
associative_L
_)
.
Qed
.
Program
Instance
pos_countable
:
Countable
positive
:=
{|
encode
:=
id
;
decode
:=
Some
;
decode_encode
x
:=
eq_refl
|}
.
Lemma
list_encode_app
`{
Countable
A
}
(
l1
l2
:
list
A
)
:
encode
(
l1
++
l2
)
%
list
=
encode
l1
++
encode
l2
.
Proof
.
apply
list_encode_app'
.
Qed
.
Lemma
list_encode_cons
`{
Countable
A
}
x
(
l
:
list
A
)
:
encode
(
x
::
l
)
=
Nat
.
iter
(
encode_nat
x
)
(
~
0
)
3
++
encode
l
.
Proof
.
apply
(
list_encode_app'
[_])
.
Qed
.
Lemma
list_encode_suffix
`{
Countable
A
}
(
l
k
:
list
A
)
:
l
`
suffix_of
`
k
→
∃
q
,
encode
k
=
q
++
encode
l
.
Proof
.
intros
[
l'
->
];
exists
(
encode
l'
);
apply
list_encode_app
.
Qed
.
(** ** Numbers *)
Instance
pos_countable
:
Countable
positive
:=
{|
encode
:=
id
;
decode
:=
Some
;
decode_encode
x
:=
eq_refl
|}
.
Program
Instance
N_countable
:
Countable
N
:=
{|
encode
x
:=
match
x
with
N0
=>
1
|
Npos
p
=>
Pos
.
succ
p
end
;
decode
p
:=
if
decide
(
p
=
1
)
then
Some
0
%
N
else
Some
(
Npos
(
Pos
.
pred
p
))
|}
.
Next
Obligation
.
intros
[|
p
];
simpl
;
repeat
case_decide
;
auto
with
lia
.
by
rewrite
Pos
.
pred_succ
.
by
intros
[|
p
];
simpl
;[|
rewrite
decide_False
,
Pos
.
pred_succ
by
(
by
destruct
p
)]
.
Qed
.
Program
Instance
Z_countable
:
Countable
Z
:=
{|
encode
x
:=
match
x
with
Z0
=>
1
|
Zpos
p
=>
p
~
0
|
Zneg
p
=>
p
~
1
end
;
decode
p
:=
Some
match
p
with
1
=>
Z0
|
p
~
0
=>
Zpos
p
|
p
~
1
=>
Zneg
p
end
encode
x
:=
match
x
with
Z0
=>
1
|
Zpos
p
=>
p
~
0
|
Zneg
p
=>
p
~
1
end
;
decode
p
:=
Some
match
p
with
1
=>
Z0
|
p
~
0
=>
Zpos
p
|
p
~
1
=>
Zneg
p
end
|}
.
Next
Obligation
.
by
intros
[|
p
|
p
]
.
Qed
.
Program
Instance
nat_countable
:
Countable
nat
:=
{|
encode
x
:=
encode
(
N
.
of_nat
x
);
decode
p
:=
N
.
to_nat
<$>
decode
p
|}
.
Program
Instance
nat_countable
:
Countable
nat
:=
{|
encode
x
:=
encode
(
N
.
of_nat
x
);
decode
p
:=
N
.
to_nat
<$>
decode
p
|}
.
Next
Obligation
.
intros
x
;
lazy
beta
;
rewrite
decode_encode
;
csimpl
.
by
rewrite
Nat2N
.
id
.
by
intros
x
;
lazy
beta
;
rewrite
decode_encode
;
csimpl
;
rewrite
Nat2N
.
id
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment