Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Glen Mével
stdpp
Commits
5f737816
Commit
5f737816
authored
10 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Type punning for lookup/alter on values.
parent
5644d68f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/list.v
+37
-13
37 additions, 13 deletions
theories/list.v
with
37 additions
and
13 deletions
theories/list.v
+
37
−
13
View file @
5f737816
...
...
@@ -1972,6 +1972,15 @@ Section Forall_Exists.
Proof
.
intros
H
.
apply
Forall_proper
.
red
;
apply
H
.
done
.
Qed
.
Lemma
Forall_not
l
:
length
l
≠
0
→
Forall
(
not
∘
P
)
l
→
¬
Forall
P
l
.
Proof
.
by
destruct
2
;
inversion
1
.
Qed
.
Lemma
Forall_and
{
Q
}
l
:
Forall
(
λ
x
,
P
x
∧
Q
x
)
l
↔
Forall
P
l
∧
Forall
Q
l
.
Proof
.
split
;
[
induction
1
;
constructor
;
naive_solver
|]
.
intros
[
Hl
Hl'
];
revert
Hl'
;
induction
Hl
;
inversion_clear
1
;
auto
.
Qed
.
Lemma
Forall_and_l
{
Q
}
l
:
Forall
(
λ
x
,
P
x
∧
Q
x
)
l
→
Forall
P
l
.
Proof
.
rewrite
Forall_and
;
tauto
.
Qed
.
Lemma
Forall_and_r
{
Q
}
l
:
Forall
(
λ
x
,
P
x
∧
Q
x
)
l
→
Forall
Q
l
.
Proof
.
rewrite
Forall_and
;
tauto
.
Qed
.
Lemma
Forall_delete
l
i
:
Forall
P
l
→
Forall
P
(
delete
i
l
)
.
Proof
.
intros
H
.
revert
i
.
by
induction
H
;
intros
[|
i
];
try
constructor
.
Qed
.
Lemma
Forall_lookup
l
:
Forall
P
l
↔
∀
i
x
,
l
!!
i
=
Some
x
→
P
x
.
...
...
@@ -2275,26 +2284,39 @@ Section Forall2.
intros
.
rewrite
!
resize_spec
,
(
Forall2_length
l
k
)
by
done
.
auto
using
Forall2_app
,
Forall2_take
,
Forall2_replicate
.
Qed
.
Lemma
Forall2_resize_
ge_
l
l
k
x
y
n
m
:
P
x
y
→
Forall
(
flip
P
y
)
l
→
n
≤
m
→
Lemma
Forall2_resize_l
l
k
x
y
n
m
:
P
x
y
→
Forall
(
flip
P
y
)
l
→
Forall2
P
(
resize
n
x
l
)
k
→
Forall2
P
(
resize
m
x
l
)
(
resize
m
y
k
)
.
Proof
.
intros
.
assert
(
n
=
length
k
)
as
->
.
intros
.
destruct
(
decide
(
m
≤
n
))
.
{
rewrite
<-
(
resize_resize
l
m
n
)
by
done
.
by
apply
Forall2_resize
.
}
intros
.
assert
(
n
=
length
k
);
subst
.
{
by
rewrite
<-
(
Forall2_length
(
resize
n
x
l
)
k
),
resize_length
.
}
rewrite
(
le_plus_minus
(
length
k
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
done
;
auto
using
Forall2_app
,
Forall2_replicate_r
,
rewrite
(
le_plus_minus
(
length
k
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
lia
.
auto
using
Forall2_app
,
Forall2_replicate_r
,
Forall_resize
,
Forall_drop
,
resize_length
.
Qed
.
Lemma
Forall2_resize_
ge_
r
l
k
x
y
n
m
:
P
x
y
→
Forall
(
P
x
)
k
→
n
≤
m
→
Lemma
Forall2_resize_r
l
k
x
y
n
m
:
P
x
y
→
Forall
(
P
x
)
k
→
Forall2
P
l
(
resize
n
y
k
)
→
Forall2
P
(
resize
m
x
l
)
(
resize
m
y
k
)
.
Proof
.
intros
.
assert
(
n
=
length
l
)
as
->
.
intros
.
destruct
(
decide
(
m
≤
n
))
.
{
rewrite
<-
(
resize_resize
k
m
n
)
by
done
.
by
apply
Forall2_resize
.
}
assert
(
n
=
length
l
);
subst
.
{
by
rewrite
(
Forall2_length
l
(
resize
n
y
k
)),
resize_length
.
}
rewrite
(
le_plus_minus
(
length
l
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
done
;
auto
using
Forall2_app
,
Forall2_replicate_l
,
rewrite
(
le_plus_minus
(
length
l
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
lia
.
auto
using
Forall2_app
,
Forall2_replicate_l
,
Forall_resize
,
Forall_drop
,
resize_length
.
Qed
.
Lemma
Forall2_resize_r_flip
l
k
x
y
n
m
:
P
x
y
→
Forall
(
P
x
)
k
→
length
k
=
m
→
Forall2
P
l
(
resize
n
y
k
)
→
Forall2
P
(
resize
m
x
l
)
k
.
Proof
.
intros
??
<-
?
.
rewrite
<-
(
resize_all
k
y
)
at
2
.
apply
Forall2_resize_r
with
n
;
auto
using
Forall_true
.
Qed
.
Lemma
Forall2_sublist_lookup_l
l
k
n
i
l'
:
Forall2
P
l
k
→
sublist_lookup
n
i
l
=
Some
l'
→
∃
k'
,
sublist_lookup
n
i
k
=
Some
k'
∧
Forall2
P
l'
k'
.
...
...
@@ -3243,14 +3265,16 @@ Ltac decompose_Forall_hyps :=
let
E
:=
fresh
in
assert
(
P
x
)
as
E
by
(
apply
(
Forall_lookup_1
P
_
_
_
H
H1
));
lazy
beta
in
E
|
H
:
Forall2
?P
?l
?k
|
-
_
=>
lazy
match
goal
with
match
goal
with
|
H1
:
l
!!
?i
=
Some
?x
,
H2
:
k
!!
?i
=
Some
?y
|
-
_
=>
unless
(
P
x
y
)
by
done
;
let
E
:=
fresh
in
assert
(
P
x
y
)
as
E
by
(
by
apply
(
Forall2_lookup_lr
P
l
k
i
x
y
));
lazy
beta
in
E
|
H1
:
l
!!
_
=
Some
?x
|
-
_
=>
|
H1
:
l
!!
?i
=
Some
?x
|
-
_
=>
try
(
match
goal
with
_
:
k
!!
i
=
Some
_
|
-
_
=>
fail
2
end
);
destruct
(
Forall2_lookup_l
P
_
_
_
_
H
H1
)
as
(?
&
?
&
?)
|
H2
:
k
!!
_
=
Some
?y
|
-
_
=>
|
H2
:
k
!!
?i
=
Some
?y
|
-
_
=>
try
(
match
goal
with
_
:
l
!!
i
=
Some
_
|
-
_
=>
fail
2
end
);
destruct
(
Forall2_lookup_r
P
_
_
_
_
H
H2
)
as
(?
&
?
&
?)
end
|
H
:
Forall3
?P
?l
?l'
?k
|
-
_
=>
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment