Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
George Pirlea
Iris
Commits
1847520d
Commit
1847520d
authored
8 years ago
by
David Swasey
Browse files
Options
Downloads
Patches
Plain Diff
Do not try to lift with conditional head_reducibility.
parent
e2d12989
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
theories/program_logic/ectx_language.v
+10
-0
10 additions, 0 deletions
theories/program_logic/ectx_language.v
theories/program_logic/ectx_lifting.v
+7
-105
7 additions, 105 deletions
theories/program_logic/ectx_lifting.v
theories/program_logic/ownp.v
+28
-94
28 additions, 94 deletions
theories/program_logic/ownp.v
with
45 additions
and
199 deletions
theories/program_logic/ectx_language.v
+
10
−
0
View file @
1847520d
...
...
@@ -61,6 +61,8 @@ Section ectx_language.
∃
e'
σ'
efs
,
head_step
e
σ
e'
σ'
efs
.
Definition
head_irreducible
(
e
:
expr
)
(
σ
:
state
)
:=
∀
e'
σ'
efs
,
¬
head_step
e
σ
e'
σ'
efs
.
Definition
head_progressive
(
e
:
expr
)
(
σ
:
state
)
:=
is_Some
(
to_val
e
)
∨
∃
K
e'
,
e
=
fill
K
e'
∧
head_reducible
e'
σ
.
(* All non-value redexes are at the root. In other words, all sub-redexes are
values. *)
...
...
@@ -117,6 +119,14 @@ Section ectx_language.
rewrite
-
not_reducible
-
not_head_reducible
.
eauto
using
prim_head_reducible
.
Qed
.
Lemma
progressive_head_progressive
e
σ
:
progressive
e
σ
→
head_progressive
e
σ
.
Proof
.
case
=>[?|
Hred
];
first
by
left
.
right
.
move
:
Hred
=>
[]
e'
[]
σ'
[]
efs
[]
K
e1'
e2'
EQ
EQ'
Hstep
.
subst
.
exists
K
,
e1'
.
split
;
first
done
.
by
exists
e2'
,
σ'
,
efs
.
Qed
.
Lemma
ectx_language_strong_atomic
e
:
(
∀
σ
e'
σ'
efs
,
head_step
e
σ
e'
σ'
efs
→
is_Some
(
to_val
e'
))
→
sub_redexes_are_values
e
→
...
...
This diff is collapsed.
Click to expand it.
theories/program_logic/ectx_lifting.v
+
7
−
105
View file @
1847520d
...
...
@@ -13,17 +13,6 @@ Implicit Types v : val.
Implicit
Types
e
:
expr
.
Hint
Resolve
head_prim_reducible
head_reducible_prim_step
.
Hint
Resolve
(
reducible_not_val
_
inhabitant
)
.
Definition
head_progressive
(
e
:
expr
)
(
σ
:
state
)
:=
is_Some
(
to_val
e
)
∨
∃
K
e'
,
e
=
fill
K
e'
∧
head_reducible
e'
σ
.
Lemma
progressive_head_progressive
e
σ
:
progressive
e
σ
→
head_progressive
e
σ
.
Proof
.
case
=>[?|
Hred
];
first
by
left
.
right
.
move
:
Hred
=>
[]
e'
[]
σ'
[]
efs
[]
K
e1'
e2'
EQ
EQ'
Hstep
.
subst
.
exists
K
,
e1'
.
split
;
first
done
.
by
exists
e2'
,
σ'
,
efs
.
Qed
.
Hint
Resolve
progressive_head_progressive
.
Lemma
wp_ectx_bind
{
p
E
e
}
K
Φ
:
...
...
@@ -50,25 +39,6 @@ Proof.
iApply
"H"
;
eauto
.
Qed
.
(*
PDS: Discard. It's confusing. In practice, we just need rules
like wp_lift_head_{step,stuck}.
*)
Lemma
wp_strong_lift_head_step
p
E
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
state_interp
σ1
=
{
E
,
∅
}
=∗
⌜
if
p
then
head_reducible
e1
σ1
else
True
⌝
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
=
{
∅
,
E
}
=∗
state_interp
σ2
∗
WP
e2
@
p
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"H"
.
iApply
wp_lift_step
=>
//.
iIntros
(
σ1
)
"Hσ"
.
iMod
(
"H"
with
"Hσ"
)
as
"[% H]"
;
iModIntro
.
iSplit
;
first
by
destruct
p
;
eauto
.
iNext
.
iIntros
(
e2
σ2
efs
)
"%"
.
iApply
"H"
;
eauto
.
Qed
.
Lemma
wp_lift_head_stuck
E
Φ
e
:
to_val
e
=
None
→
(
∀
σ
,
state_interp
σ
=
{
E
,
∅
}
=∗
⌜¬
head_progressive
e
σ
⌝
)
...
...
@@ -91,18 +61,6 @@ Proof using Hinh.
iIntros
(????)
.
iApply
"H"
;
eauto
.
Qed
.
(* PDS: Discard. *)
Lemma
wp_strong_lift_pure_head_step
p
E
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2
σ2
efs
,
prim_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
▷
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
p
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
iIntros
(???)
"H"
.
iApply
wp_lift_pure_step
;
eauto
.
by
destruct
p
;
auto
.
Qed
.
Lemma
wp_lift_pure_head_stuck
E
Φ
e
:
to_val
e
=
None
→
(
∀
K
e1
σ1
e2
σ2
efs
,
e
=
fill
K
e1
→
¬
head_step
e1
σ1
e2
σ2
efs
)
→
...
...
@@ -114,43 +72,28 @@ Proof using Hinh.
move
=>[]
K
[]
e1
[]
Hfill
[]
e2
[]
σ2
[]
efs
/=
Hstep
.
exact
:
Hnstep
.
Qed
.
Lemma
wp_lift_atomic_head_step
{
E
Φ
}
e1
:
Lemma
wp_lift_atomic_head_step
{
p
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
state_interp
σ1
=
{
E
}
=∗
⌜
head_reducible
e1
σ1
⌝
∗
▷
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
=
{
E
}
=∗
state_interp
σ2
∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"H"
.
iApply
wp_lift_atomic_step
;
eauto
.
iIntros
(
σ1
)
"Hσ1"
.
iMod
(
"H"
$!
σ1
with
"Hσ1"
)
as
"[% H]"
;
iModIntro
.
iSplit
;
first
by
eauto
.
iNext
.
iIntros
(
e2
σ2
efs
)
"%"
.
iApply
"H"
;
auto
.
Qed
.
(* PDS: Discard. *)
Lemma
wp_strong_lift_atomic_head_step
{
p
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
state_interp
σ1
=
{
E
}
=∗
⌜
if
p
then
head_reducible
e1
σ1
else
True
⌝
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
=
{
E
}
=∗
state_interp
σ2
∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"H"
.
iApply
wp_lift_atomic_step
;
eauto
.
iIntros
(
σ1
)
"Hσ1"
.
iMod
(
"H"
$!
σ1
with
"Hσ1"
)
as
"[% H]"
;
iModIntro
.
iSplit
;
first
by
destruct
p
;
e
auto
.
by
iNext
;
iIntros
(
e2
σ2
efs
?);
iApply
"H"
;
e
auto
.
iIntros
(
σ1
)
"Hσ1"
.
iMod
(
"H"
with
"Hσ1"
)
as
"[% H]"
;
iModIntro
.
iSplit
;
first
by
destruct
p
;
auto
.
iNext
.
iIntros
(
e2
σ2
efs
)
"%"
.
iApply
"H"
;
auto
.
Qed
.
Lemma
wp_lift_atomic_head_step_no_fork
{
E
Φ
}
e1
:
Lemma
wp_lift_atomic_head_step_no_fork
{
p
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
state_interp
σ1
=
{
E
}
=∗
⌜
head_reducible
e1
σ1
⌝
∗
▷
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
=
{
E
}
=∗
⌜
efs
=
[]
⌝
∗
state_interp
σ2
∗
default
False
(
to_val
e2
)
Φ
)
⊢
WP
e1
@
E
{{
Φ
}}
.
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"H"
.
iApply
wp_lift_atomic_head_step
;
eauto
.
iIntros
(
σ1
)
"Hσ1"
.
iMod
(
"H"
$!
σ1
with
"Hσ1"
)
as
"[$ H]"
;
iModIntro
.
...
...
@@ -158,22 +101,6 @@ Proof.
iMod
(
"H"
$!
v2
σ2
efs
with
"[# //]"
)
as
"(% & $ & $)"
;
subst
;
auto
.
Qed
.
(* PDS: Discard. *)
Lemma
wp_strong_lift_atomic_head_step_no_fork
{
p
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
state_interp
σ1
=
{
E
}
=∗
⌜
if
p
then
head_reducible
e1
σ1
else
True
⌝
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
=
{
E
}
=∗
⌜
efs
=
[]
⌝
∗
state_interp
σ2
∗
default
False
(
to_val
e2
)
Φ
)
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"H"
.
iApply
wp_strong_lift_atomic_head_step
;
eauto
.
iIntros
(
σ1
)
"Hσ1"
.
iMod
(
"H"
with
"Hσ1"
)
as
"[$ H]"
;
iModIntro
.
iNext
;
iIntros
(
v2
σ2
efs
)
"%"
.
iMod
(
"H"
with
"[#]"
)
as
"(% & $ & $)"
=>
//
;
subst
.
by
iApply
big_sepL_nil
.
Qed
.
Lemma
wp_lift_pure_det_head_step
{
p
E
E'
Φ
}
e1
e2
efs
:
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
...
...
@@ -185,19 +112,6 @@ Proof using Hinh.
destruct
p
;
by
auto
.
Qed
.
(* PDS: Discard. *)
Lemma
wp_strong_lift_pure_det_head_step
{
p
E
Φ
}
e1
e2
efs
:
to_val
e1
=
None
→
(
∀
σ1
,
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
p
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
iIntros
(???)
"H"
;
iApply
wp_lift_pure_det_step
;
eauto
.
by
destruct
p
;
eauto
.
Qed
.
Lemma
wp_lift_pure_det_head_step_no_fork
{
p
E
E'
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
...
...
@@ -219,16 +133,4 @@ Proof using Hinh.
intros
.
rewrite
-
[(
WP
e1
@
_
{{
_
}})
%
I
]
wp_lift_pure_det_head_step_no_fork
//.
rewrite
-
step_fupd_intro
//.
Qed
.
(* PDS: Discard. *)
Lemma
wp_strong_lift_pure_det_head_step_no_fork
{
p
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
p
;
E
{{
Φ
}}
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
e1
e2
[])
?big_sepL_nil
?right_id
;
eauto
.
by
destruct
p
;
eauto
.
Qed
.
End
wp
.
This diff is collapsed.
Click to expand it.
theories/program_logic/ownp.v
+
28
−
94
View file @
1847520d
...
...
@@ -201,140 +201,82 @@ Section ectx_lifting.
Implicit
Types
Φ
:
val
→
iProp
Σ
.
Implicit
Types
e
:
expr
.
Hint
Resolve
head_prim_reducible
head_reducible_prim_step
.
Hint
Resolve
(
reducible_not_val
_
inhabitant
)
.
Hint
Resolve
progressive_head_progressive
.
Lemma
ownP_lift_head_step
E
Φ
e1
:
Lemma
ownP_lift_head_step
p
E
Φ
e1
:
to_val
e1
=
None
→
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
head_reducible
e1
σ1
⌝
∗
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
=
{
∅
,
E
}
=∗
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
=
{
∅
,
E
}
=∗
WP
e2
@
p
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"H"
.
iApply
ownP_lift_step
;
first
done
.
iMod
"H"
as
(
σ1
?)
"[Hσ1 Hwp]"
.
iModIntro
.
iExists
σ1
.
iSplit
;
first
by
eauto
.
iFrame
.
iNext
.
iIntros
(
e2
σ2
efs
)
"% ?"
.
iSplit
;
first
by
destruct
p
;
eauto
.
iFrame
.
iNext
.
iIntros
(
e2
σ2
efs
)
"% ?"
.
iApply
(
"Hwp"
with
"[]"
);
eauto
.
Qed
.
(* PDS: Discard *)
Lemma
ownP_strong_lift_head_step
p
E
Φ
e1
:
to_val
e1
=
None
→
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
if
p
then
head_reducible
e1
σ1
else
True
⌝
∗
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
=
{
∅
,
E
}
=∗
WP
e2
@
p
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Lemma
ownP_lift_head_stuck
E
Φ
e
:
(|
=
{
E
,
∅
}=>
∃
σ
,
⌜¬
head_progressive
e
σ
⌝
∗
▷
ownP
σ
)
⊢
WP
e
@
E
?{{
Φ
}}
.
Proof
.
iIntros
(?)
"H"
;
iApply
ownP_lift_step
;
first
done
.
iMod
"H"
as
(
σ1
)
"(%&Hσ1&Hwp)"
.
iModIntro
.
iExists
σ1
.
iSplit
;
first
by
destruct
p
;
eauto
.
by
iFrame
.
iIntros
"H"
.
iApply
ownP_lift_stuck
.
iMod
"H"
as
(
σ
)
"[% >Hσ]"
.
iModIntro
.
iExists
σ
.
iFrame
"Hσ"
.
by
eauto
.
Qed
.
Lemma
ownP_lift_pure_head_step
E
Φ
e1
:
Lemma
ownP_lift_pure_head_step
p
E
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2
σ2
efs
,
head_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
▷
∀
e2
efs
σ
,
⌜
head_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
using
Hinh
.
iIntros
(??)
"H"
.
iApply
ownP_lift_pure_step
;
simpl
;
eauto
using
(
reducible_not_val
_
inhabitant
)
.
iNext
.
iIntros
(????)
.
iApply
"H"
;
eauto
.
Qed
.
(* PDS: Discard. *)
Lemma
ownP_strong_lift_pure_head_step
p
E
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2
σ2
efs
,
prim_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
▷
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
p
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
iIntros
(???)
"H"
.
iApply
ownP_lift_pure_step
;
eauto
.
by
destruct
p
;
eauto
.
iIntros
(???)
"H"
.
iApply
ownP_lift_pure_step
;
eauto
.
{
by
destruct
p
;
auto
.
}
iNext
.
iIntros
(????)
.
iApply
"H"
;
eauto
.
Qed
.
Lemma
ownP_lift_atomic_head_step
{
E
Φ
}
e1
σ1
:
Lemma
ownP_lift_atomic_head_step
{
p
E
Φ
}
e1
σ1
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
▷
ownP
σ1
∗
▷
(
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"[? H]"
.
iApply
ownP_lift_atomic_step
;
simpl
;
eauto
using
reducible_not_val
.
iFrame
.
iNext
.
iIntros
(???)
"% ?"
.
iApply
(
"H"
with
"[]"
);
eauto
.
Qed
.
(* PDS: Discard. *)
Lemma
ownP_strong_lift_atomic_head_step
{
p
E
Φ
}
e1
σ1
:
to_val
e1
=
None
→
(
if
p
then
head_reducible
e1
σ1
else
True
)
→
▷
ownP
σ1
∗
▷
(
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
.
iIntros
(??)
"[? H]"
.
iApply
ownP_lift_atomic_step
;
eauto
;
try
iFrame
.
by
destruct
p
;
eauto
.
iIntros
(??)
"[? H]"
.
iApply
ownP_lift_atomic_step
;
eauto
.
{
by
destruct
p
;
eauto
.
}
iFrame
.
iNext
.
iIntros
(???)
"% ?"
.
iApply
(
"H"
with
"[]"
);
eauto
.
Qed
.
Lemma
ownP_lift_atomic_det_head_step
{
E
Φ
e1
}
σ1
v2
σ2
efs
:
Lemma
ownP_lift_atomic_det_head_step
{
p
E
Φ
e1
}
σ1
v2
σ2
efs
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
by
eauto
10
using
ownP_lift_atomic_det_step
,
reducible_not_val
.
Qed
.
Lemma
ownP_strong_lift_atomic_det_head_step
{
p
E
Φ
e1
}
σ1
v2
σ2
efs
:
to_val
e1
=
None
→
(
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
e2'
σ2'
efs'
,
prim_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
.
by
destruct
p
;
eauto
10
using
ownP_lift_atomic_det_step
.
Qed
.
Lemma
ownP_lift_atomic_det_head_step_no_fork
{
E
e1
}
σ1
v2
σ2
:
Lemma
ownP_lift_atomic_det_head_step_no_fork
{
p
E
e1
}
σ1
v2
σ2
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
[]
=
efs'
)
→
{{{
▷
ownP
σ1
}}}
e1
@
E
{{{
RET
v2
;
ownP
σ2
}}}
.
Proof
.
by
eauto
10
using
ownP_lift_atomic_det_step_no_fork
,
reducible_not_val
.
Qed
.
(* PDS: Discard. *)
Lemma
ownP_strong_lift_atomic_det_head_step_no_fork
{
p
E
e1
}
σ1
v2
σ2
:
to_val
e1
=
None
→
(
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
e2'
σ2'
efs'
,
prim_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
[]
=
efs'
)
→
{{{
▷
ownP
σ1
}}}
e1
@
p
;
E
{{{
RET
v2
;
ownP
σ2
}}}
.
Proof
.
intros
???;
apply
ownP_lift_atomic_det_step_no_fork
;
eauto
.
by
destruct
p
;
eauto
.
Qed
.
Lemma
ownP_lift_pure_det_head_step
{
E
Φ
}
e1
e2
efs
:
Lemma
ownP_lift_pure_det_head_step
{
p
E
Φ
}
e1
e2
efs
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
using
Hinh
.
intros
.
rewrite
-
[(
WP
e1
@
_
{{
_
}})
%
I
]
wp_lift_pure_det_step
;
eauto
using
(
reducible_not_val
_
inhabitant
)
.
Qed
.
(* PDS: Discard. *)
Lemma
ownP_strong_lift_pure_det_head_step
{
p
E
Φ
}
e1
e2
efs
:
to_val
e1
=
None
→
(
∀
σ1
,
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
p
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
p
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
...
...
@@ -342,18 +284,10 @@ Section ectx_lifting.
by
destruct
p
;
eauto
.
Qed
.
Lemma
ownP_lift_pure_det_head_step_no_fork
{
E
Φ
}
e1
e2
:
Lemma
ownP_lift_pure_det_head_step_no_fork
{
p
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
E
{{
Φ
}}
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
using
Hinh
.
by
eauto
using
ownP_lift_pure_det_step_no_fork
.
Qed
.
(* PDS: Discard. *)
Lemma
ownP_strong_lift_pure_det_head_step_no_fork
{
p
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
if
p
then
head_reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
p
;
E
{{
Φ
}}
⊢
WP
e1
@
p
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
iIntros
(???)
"H"
.
iApply
ownP_lift_pure_det_step_no_fork
;
eauto
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment