Skip to content
Snippets Groups Projects
Commit 9a4e9b7b authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Rename bot into emp. Revert a wrong simplification of the previous commit (emp...

Rename bot into emp. Revert a wrong simplification of the previous commit (emp has to be defined manually).
parent 25c44d0c
No related branches found
No related tags found
No related merge requests found
......@@ -100,9 +100,21 @@ Section types.
Context `{heapG Σ, lifetimeG Σ, thread_localG Σ}.
Program Definition bot :=
ty_of_st {| st_size := 0; st_own tid vl := False%I |}.
(* [emp] cannot be defined using [ty_of_st], because the least we
would be able to prove from its [ty_shr] would be [▷ False], but
we really need [False] to prove [ty_incl_emp]. *)
Program Definition emp :=
{| ty_size := 0; ty_dup := true;
ty_own tid vl := False%I; ty_shr κ tid N l := False%I |}.
Next Obligation. iIntros (tid vl) "[]". Qed.
Next Obligation.
iIntros (????????) "Hb Htok".
iVs (lft_borrow_exists with "Hb Htok") as (vl) "[Hb Htok]". set_solver.
iVs (lft_borrow_split with "Hb") as "[_ Hb]". set_solver.
iVs (lft_borrow_persistent with "Hb Htok") as "[>[] _]". set_solver.
Qed.
Next Obligation. iIntros (?????) "_ []". Qed.
Next Obligation. intros. iIntros "[]". Qed.
Program Definition unit :=
ty_of_st {| st_size := 0; st_own tid vl := (vl = [])%I |}.
......@@ -387,8 +399,8 @@ Section types.
Lemma split_sum_mt l tid q tyl :
(l ↦★{q}: λ vl,
(i : nat) vl', vl = #i :: vl' ty_own (nth i tyl bot) tid vl')%I
⊣⊢ (i : nat), l {q} #i shift_loc l 1 ↦★{q}: ty_own (nth i tyl bot) tid.
(i : nat) vl', vl = #i :: vl' ty_own (nth i tyl emp) tid vl')%I
⊣⊢ (i : nat), l {q} #i shift_loc l 1 ↦★{q}: ty_own (nth i tyl emp) tid.
Proof.
iSplit; iIntros "H".
- iDestruct "H" as (vl) "[Hmt Hown]". iDestruct "Hown" as (i vl') "(%&Hown)". subst.
......@@ -405,7 +417,7 @@ Section types.
apply List.Forall_cons; [reflexivity|] : typeclass_instances.
Lemma sum_size_eq n tid i tyl vl {Hn : LstTySize n tyl} :
ty_own (nth i tyl bot) tid vl length vl = n.
ty_own (nth i tyl emp) tid vl length vl = n.
Proof.
iIntros "Hown". iDestruct (ty_size_eq with "Hown") as %->.
revert Hn. rewrite /LstTySize List.Forall_forall /= =>Hn.
......@@ -416,14 +428,14 @@ Section types.
Program Definition sum {n} (tyl : list type) {_:LstTySize n tyl} :=
{| ty_size := S n; ty_dup := forallb ty_dup tyl;
ty_own tid vl :=
( (i : nat) vl', vl = #i :: vl' (nth i tyl bot).(ty_own) tid vl')%I;
( (i : nat) vl', vl = #i :: vl' (nth i tyl emp).(ty_own) tid vl')%I;
ty_shr κ tid N l :=
( (i : nat), (&frac{κ} λ q, l {q} #i)
(nth i tyl bot).(ty_shr) κ tid N (shift_loc l 1))%I
(nth i tyl emp).(ty_shr) κ tid N (shift_loc l 1))%I
|}.
Next Obligation.
intros n tyl Hn tid vl Hdup%Is_true_eq_true.
cut ( i vl', PersistentP (ty_own (nth i tyl bot) tid vl')). apply _.
cut ( i vl', PersistentP (ty_own (nth i tyl emp) tid vl')). apply _.
intros. apply ty_dup_persistent. edestruct nth_in_or_default as [| ->]; last done.
rewrite ->forallb_forall in Hdup. auto using Is_true_eq_left.
Qed.
......@@ -435,14 +447,14 @@ Section types.
intros n tyl Hn E N κ l tid q ??. iIntros "Hown Htok". rewrite split_sum_mt.
iVs (lft_borrow_exists with "Hown Htok") as (i) "[Hown Htok]". set_solver.
iVs (lft_borrow_split with "Hown") as "[Hmt Hown]". set_solver.
iVs ((nth i tyl bot).(ty_share) with "Hown Htok") as "[#Hshr Htok]"; try done.
iVs ((nth i tyl emp).(ty_share) with "Hown Htok") as "[#Hshr Htok]"; try done.
iFrame. iExists i. iFrame "#". by iApply lft_borrow_fracture.
Qed.
Next Obligation.
intros n tyl Hn κ κ' tid N l. iIntros "#Hord H".
iDestruct "H" as (i) "[Hown0 Hown]". iExists i. iSplitL "Hown0".
by iApply (lft_frac_borrow_incl with "Hord").
by iApply ((nth i tyl bot).(ty_shr_mono) with "Hord").
by iApply ((nth i tyl emp).(ty_shr_mono) with "Hord").
Qed.
Next Obligation.
intros n tyl Hn κ tid N E l q ?? Hdup%Is_true_eq_true.
......@@ -450,7 +462,7 @@ Section types.
setoid_rewrite split_sum_mt. iDestruct "H" as (i) "[Hshr0 Hshr]".
iVs (lft_frac_borrow_open with "[] Hshr0 Htok1") as (q'1) "[Hown Hclose]". set_solver.
{ iIntros "!#". iIntros (q1 q2). rewrite heap_mapsto_op_eq. iSplit; eauto. }
iVs ((nth i tyl bot).(ty_shr_acc) with "Hshr [Htok2 Htl]")
iVs ((nth i tyl emp).(ty_shr_acc) with "Hshr [Htok2 Htl]")
as (q'2) "[Hownq Hclose']"; try done; [|by iFrame|].
{ edestruct nth_in_or_default as [| ->]; last done.
rewrite ->forallb_forall in Hdup. auto using Is_true_eq_left. }
......@@ -524,7 +536,7 @@ End Types.
Import Types.
Notation "!" := bot : lrust_type_scope.
Notation "!" := emp : lrust_type_scope.
Notation "&uniq{ κ } ty" := (uniq_borrow κ ty)
(format "&uniq{ κ } ty", at level 20, right associativity) : lrust_type_scope.
Notation "&shr{ κ } ty" := (shared_borrow κ ty)
......
......@@ -44,7 +44,7 @@ Section ty_incl.
eauto using ty_incl_weaken, ty_incl_trans, perm_incl_duplicable.
Qed.
Lemma ty_incl_bot ρ ty : ty_incl ρ ! ty.
Lemma ty_incl_emp ρ ty : ty_incl ρ ! ty.
Proof. iIntros (tid) "_!==>". iSplit; iIntros "!#*/=[]". Qed.
Lemma ty_incl_own ρ ty1 ty2 q :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment