Skip to content
Snippets Groups Projects
Commit eaf53dcf authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

lft_intersect is a Meet instance.

parent f8ec6ac8
No related branches found
No related tags found
No related merge requests found
Pipeline #19640 passed
......@@ -16,7 +16,7 @@ Module Export lifetime : lifetime_sig.
Include creation.
End lifetime.
Notation lft_intersect_list l := (foldr lft_intersect static l).
Notation lft_intersect_list l := (foldr () static l).
Instance lft_inhabited : Inhabited lft := populate static.
......
......@@ -21,7 +21,7 @@ Module Type lifetime_sig.
(** Definitions *)
Parameter lft : Type.
Parameter static : lft.
Parameter lft_intersect : lft lft lft.
Declare Instance lft_intersect : Meet lft.
Parameter lft_ctx : `{!invG Σ, !lftG Σ}, iProp Σ.
......@@ -44,7 +44,6 @@ Module Type lifetime_sig.
Notation "&{ κ , i }" := (idx_bor κ i) (format "&{ κ , i }") : bi_scope.
Infix "⊑" := lft_incl (at level 70) : bi_scope.
Infix "⊓" := lft_intersect (at level 40) : stdpp_scope.
Section properties.
Context `{!invG Σ, !lftG Σ}.
......@@ -53,12 +52,12 @@ Module Type lifetime_sig.
Global Declare Instance lft_inhabited : Inhabited lft.
Global Declare Instance bor_idx_inhabited : Inhabited bor_idx.
Global Declare Instance lft_intersect_comm : Comm eq lft_intersect.
Global Declare Instance lft_intersect_assoc : Assoc eq lft_intersect.
Global Declare Instance lft_intersect_inj_1 κ : Inj eq eq (lft_intersect κ).
Global Declare Instance lft_intersect_inj_2 κ : Inj eq eq (λ κ', lft_intersect κ' κ).
Global Declare Instance lft_intersect_left_id : LeftId eq static lft_intersect.
Global Declare Instance lft_intersect_right_id : RightId eq static lft_intersect.
Global Declare Instance lft_intersect_comm : Comm (A:=lft) eq ().
Global Declare Instance lft_intersect_assoc : Assoc (A:=lft) eq ().
Global Declare Instance lft_intersect_inj_1 (κ : lft) : Inj eq eq (κ ).
Global Declare Instance lft_intersect_inj_2 (κ : lft) : Inj eq eq ( κ).
Global Declare Instance lft_intersect_left_id : LeftId eq static meet.
Global Declare Instance lft_intersect_right_id : RightId eq static meet.
Global Declare Instance lft_ctx_persistent : Persistent lft_ctx.
Global Declare Instance lft_dead_persistent κ : Persistent ([κ]).
......
......@@ -17,9 +17,7 @@ Module Export lft_notation.
End lft_notation.
Definition static : lft := ( : gmultiset _).
Definition lft_intersect (κ κ' : lft) : lft := κ κ'.
Infix "⊓" := lft_intersect (at level 40) : stdpp_scope.
Instance lft_intersect : Meet lft := λ κ κ', κ κ'.
Inductive bor_state :=
| Bor_in
......
......@@ -256,12 +256,12 @@ Qed.
(** Basic rules about lifetimes *)
Instance lft_inhabited : Inhabited lft := _.
Instance bor_idx_inhabited : Inhabited bor_idx := _.
Instance lft_intersect_comm : Comm eq lft_intersect := _.
Instance lft_intersect_assoc : Assoc eq lft_intersect := _.
Instance lft_intersect_inj_1 κ : Inj eq eq (lft_intersect κ) := _.
Instance lft_intersect_inj_2 κ : Inj eq eq (λ κ', lft_intersect κ' κ) := _.
Instance lft_intersect_left_id : LeftId eq static lft_intersect := _.
Instance lft_intersect_right_id : RightId eq static lft_intersect := _.
Instance lft_intersect_comm : Comm (A:=lft) eq () := _.
Instance lft_intersect_assoc : Assoc (A:=lft) eq () := _.
Instance lft_intersect_inj_1 κ : Inj eq eq (κ ) := _.
Instance lft_intersect_inj_2 κ : Inj eq eq ( κ) := _.
Instance lft_intersect_left_id : LeftId eq static () := _.
Instance lft_intersect_right_id : RightId eq static () := _.
Lemma lft_tok_sep q κ1 κ2 : q.[κ1] q.[κ2] ⊣⊢ q.[κ1 κ2].
Proof. by rewrite /lft_tok -big_sepMS_disj_union. Qed.
......@@ -269,7 +269,7 @@ Proof. by rewrite /lft_tok -big_sepMS_disj_union. Qed.
Lemma lft_dead_or κ1 κ2 : [κ1] [κ2] ⊣⊢ [ κ1 κ2].
Proof.
rewrite /lft_dead -or_exist. apply exist_proper=> Λ.
rewrite -sep_or_r -pure_or. do 2 f_equiv. unfold lft_intersect. set_solver.
rewrite -sep_or_r -pure_or. do 2 f_equiv. set_solver.
Qed.
Lemma lft_tok_dead q κ : q.[κ] -∗ [ κ] -∗ False.
......
......@@ -51,7 +51,7 @@ Section lft_contexts.
- iDestruct "H" as "[Hq Hq']".
iDestruct "Hq" as (κ0) "(% & Hq & #?)".
iDestruct "Hq'" as (κ0') "(% & Hq' & #?)". simpl in *.
rewrite (inj (lft_intersect (foldr lft_intersect static κs)) κ0' κ0); last congruence.
rewrite (inj ((lft_intersect_list κs) ) κ0' κ0); last congruence.
iExists κ0. by iFrame "∗%".
Qed.
......@@ -229,8 +229,8 @@ Section lft_contexts.
iDestruct "HL" as "[HL1 HL2]". rewrite {2}/llctx_interp /llctx_elt_interp.
iDestruct (big_sepL_lookup_acc with "HL2") as "[Hκ Hclose]". done.
iDestruct "Hκ" as (κ0) "(EQ & Htok & #Hend)". simpl. iDestruct "EQ" as %->.
iAssert ( q', q'.[foldr lft_intersect static κs]
(q'.[foldr lft_intersect static κs] ={F}=∗ llctx_interp L (qL / 2)))%I
iAssert ( q', q'.[lft_intersect_list κs]
(q'.[lft_intersect_list κs] ={F}=∗ llctx_interp L (qL / 2)))%I
with "[> HE HL1]" as "H".
{ move:(qL/2)%Qp=>qL'. clear HL. iClear "Hend".
iInduction Hκs as [|κ κs ?] "IH" forall (qL').
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment