Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lambda-rust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Service Desk
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
lambda-rust
Commits
fad9858d
Commit
fad9858d
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More hacking.
parent
51e24f5e
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/lifetime.v
+186
-19
186 additions, 19 deletions
theories/lifetime.v
with
186 additions
and
19 deletions
theories/lifetime.v
+
186
−
19
View file @
fad9858d
...
...
@@ -136,9 +136,13 @@ Section defs.
own_cnt
κ
(
●
0
)
∗
lft_inh
κ
true
P
)
%
I
.
Definition
lft_alive_in
(
A
:
gmap
atomic_lft
bool
)
(
κ
:
lft
)
:
Prop
:=
∀
Λ
,
Λ
∈
κ
→
A
!!
Λ
=
Some
true
.
Definition
lft_dead_in
(
A
:
gmap
atomic_lft
bool
)
(
κ
:
lft
)
:
Prop
:=
∃
Λ
,
Λ
∈
κ
∧
A
!!
Λ
=
Some
false
.
Definition
lft_inv
(
A
:
gmap
atomic_lft
bool
)
(
κ
:
lft
)
:
iProp
Σ
:=
((
lft_alive
κ
∗
⌜∀
Λ
,
Λ
∈
κ
→
A
!!
Λ
=
Some
true
⌝
)
∨
(
lft_dead
κ
∗
⌜∃
Λ
,
Λ
∈
κ
∧
A
!!
Λ
=
Some
false
⌝
))
%
I
.
(
lft_alive
κ
∗
⌜
lft_alive_in
A
κ
⌝
∨
lft_dead
κ
∗
⌜
lft_dead_in
A
κ
⌝
)
%
I
.
Definition
lfts_inv
:
iProp
Σ
:=
(
∃
(
A
:
gmap
atomic_lft
bool
)
(
I
:
gmap
lft
lft_names
),
...
...
@@ -493,12 +497,23 @@ Proof.
iFrame
"HA HA'"
.
rewrite
/
lft_inv
.
destruct
(
decide
(
set_Exists
(
λ
Λ
,
A
!!
Λ
=
Some
false
)
(
dom
(
gset
_)
κ
)))
as
[(
Λ
&
HΛ
%
gmultiset_elem_of_dom
&
?)|
HA'
%
(
not_set_Exists_Forall
_)]
.
{
iNext
.
iRight
.
iDestruct
"Hdeadandalive"
as
"[$ _]"
.
eauto
.
}
{
iNext
.
iRight
.
iDestruct
"Hdeadandalive"
as
"[$ _]"
.
rewrite
/
lft_dead_in
.
eauto
.
}
iNext
.
iLeft
.
iDestruct
"Hdeadandalive"
as
"[_ $]"
.
iPureIntro
=>
Λ
/
gmultiset_elem_of_dom
HΛ
.
move
:
(
HA
_
HΛ
)
(
HA'
_
HΛ
)=>
/=.
case
:
(
A
!!
Λ
)=>[[]|];
congruence
.
Qed
.
Lemma
gmultiset_elem_of_subseteq
`{
Countable
A
}
(
X1
X2
:
gmultiset
A
)
x
:
x
∈
X1
→
X1
⊆
X2
→
x
∈
X2
.
Proof
.
(* TODO: prove the old lemma with the same name in both directions
and use it, and rename it. *)
rewrite
!
elem_of_multiplicity
;
intros
?
HX
;
specialize
(
HX
x
)
.
omega
.
Qed
.
Lemma
lft_alive_in_subseteq
A
κ
κ'
:
lft_alive_in
A
κ
→
κ'
⊆
κ
→
lft_alive_in
A
κ'
.
Proof
.
intros
Halive
?
Λ
?
.
by
eapply
Halive
,
gmultiset_elem_of_subseteq
.
Qed
.
Lemma
lft_kill
(
I
:
gmap
lft
lft_names
)
(
K
K'
:
gset
lft
)
(
κ
:
lft
)
:
let
Iinv
:=
(
own_ilft_auth
I
∗
...
...
@@ -506,7 +521,7 @@ Lemma lft_kill (I : gmap lft lft_names) (K K' : gset lft) (κ : lft) :
([
∗
set
]
κ'
∈
K'
,
lft_dead
κ'
))
%
I
in
(
∀
κ'
,
is_Some
(
I
!!
κ'
)
→
κ'
⊂
κ
→
κ'
∈
K
)
→
(
∀
κ'
,
is_Some
(
I
!!
κ'
)
→
κ
⊂
κ'
→
κ'
∈
K'
)
→
Iinv
⊢
lft_alive
κ
-∗
[
†
κ
]
=
{
⊤∖
nclose
mgmtN
}
=∗
Iinv
∗
lft_dead
κ
.
Iinv
⊢
lft_alive
κ
-∗
[
†
κ
]
=
{
⊤∖
↑
mgmtN
}
=∗
Iinv
∗
lft_dead
κ
.
Proof
.
iIntros
(
Iinv
HK
HK'
)
"(HI & Halive & Hdead) Hlalive Hκ"
.
rewrite
lft_alive_unfold
;
iDestruct
"Hlalive"
as
(
P
Q
)
"(Hbor & Hvs & Hinh)"
.
...
...
@@ -541,11 +556,108 @@ Proof.
iModIntro
.
rewrite
/
lft_dead
.
iExists
Q
.
by
iFrame
.
Qed
.
Global
Instance
lft_alive_in_dec
A
κ
:
Decision
(
lft_alive_in
A
κ
)
.
Proof
.
rewrite
/
lft_alive_in
.
refine
(
cast_if
(
decide
(
set_Forall
(
λ
Λ
,
A
!!
Λ
=
Some
true
)
(
dom
(
gset
atomic_lft
)
κ
))))
.
Admitted
.
Lemma
lfts_kill
A
(
I
:
gmap
lft
lft_names
)
(
K
K'
:
gset
lft
)
:
let
Iinv
K'
:=
(
own_ilft_auth
I
∗
[
∗
set
]
κ'
∈
K'
,
lft_alive
κ'
)
%
I
in
(
∀
κ
κ'
,
κ
∈
K
→
is_Some
(
I
!!
κ'
)
→
κ
⊆
κ'
→
κ'
∈
K
)
→
(
∀
κ
κ'
,
κ
∈
K
→
lft_alive_in
A
κ
→
is_Some
(
I
!!
κ'
)
→
κ'
∉
K
→
κ'
⊂
κ
→
κ'
∈
K'
)
→
Iinv
K'
⊢
([
∗
set
]
κ
∈
K
,
lft_inv
A
κ
∗
[
†
κ
])
=
{
⊤∖↑
mgmtN
}
=∗
Iinv
K'
∗
[
∗
set
]
κ
∈
K
,
lft_dead
κ
.
Proof
.
intros
Iinv
.
revert
K'
.
induction
(
collection_wf
K
)
as
[
K
_
IH
]=>
K'
HK
HK'
.
iIntros
"[HI Halive] HK"
.
pose
(
Kalive
:=
filter
(
lft_alive_in
A
)
K
)
.
destruct
(
decide
(
Kalive
=
∅
))
as
[
HKalive
|]
.
{
iModIntro
.
rewrite
/
Iinv
.
iFrame
.
iApply
(
big_sepS_impl
_
_
K
with
"[$HK]"
);
iAlways
.
rewrite
/
lft_inv
.
iIntros
(
κ
Hκ
)
"[[[_ %]|[$ _]] _]"
.
set_solver
.
}
destruct
(
minimal_exists_L
(
⊂
)
Kalive
)
as
(
κ
&
[
Hκalive
HκK
]
%
elem_of_filter
&
Hκmin
);
first
done
.
iDestruct
(
big_sepS_delete
_
K
κ
with
"HK"
)
as
"[[Hκinv Hκ] HK]"
;
first
done
.
rewrite
{
1
}
/
lft_inv
.
iDestruct
"Hκinv"
as
"[[Hκalive _]|[_ %]]"
;
last
first
.
{
exfalso
.
admit
.
}
iAssert
⌜
κ
∉
K'
⌝%
I
with
"[#]"
as
%
HκK'
.
{
iIntros
(
Hκ
)
.
iDestruct
(
big_sepS_elem_of
_
K'
κ
with
"Halive"
)
as
"Hκalive'"
;
first
done
.
admit
.
}
specialize
(
IH
(
K
∖
{[
κ
]}))
.
feed
specialize
IH
.
{
set_solver
+
HκK
.
}
iMod
(
IH
({[
κ
]}
∪
K'
)
with
"[HI Halive Hκalive] HK"
)
as
"[[HI Halive] Hdead]"
.
{
intros
κ'
κ''
.
rewrite
!
elem_of_difference
!
elem_of_singleton
=>
-
[?
Hneq
]
??
.
split
;
first
eauto
.
intros
->
.
eapply
(
minimal_strict_1
_
_
κ'
Hκmin
),
strict_spec_alt
;
eauto
.
apply
elem_of_filter
;
eauto
using
lft_alive_in_subseteq
.
}
{
intros
κ'
κ''
FOO
?
[
γs''
?];
revert
FOO
.
destruct
(
decide
(
κ''
=
κ
))
as
[
->
|];
[
set_solver
+|
]
.
rewrite
not_elem_of_difference
elem_of_difference
elem_of_union
not_elem_of_singleton
elem_of_singleton
.
intros
[??]
[?|?];
eauto
.
}
{
rewrite
/
Iinv
big_sepS_insert
//.
iFrame
.
}
iDestruct
(
big_sepS_insert
_
K'
with
"Halive"
)
as
"[Hκalive Halive]"
;
first
done
.
iMod
(
lft_kill
with
"[$HI $Halive $Hdead] Hκalive Hκ"
)
as
"[(HI&Halive&Hdead) Hκdead]"
.
{
intros
κ'
??
.
eapply
(
HK'
κ
);
eauto
.
intros
?
.
eapply
(
minimal_strict_1
_
_
_
Hκmin
);
eauto
.
apply
elem_of_filter
;
split
;
last
done
.
eapply
lft_alive_in_subseteq
,
gmultiset_subset_subseteq
;
eauto
.
}
{
intros
κ'
?
[??]
%
strict_spec_alt
.
rewrite
elem_of_difference
elem_of_singleton
;
eauto
.
}
iModIntro
.
rewrite
/
Iinv
(
big_sepS_delete
_
K
)
//.
iFrame
.
Admitted
.
(*
Lemma lfts_kill (I : gmap lft lft_names) (K K' : gset lft) :
let Iinv K' := (own_ilft_auth I ∗ [∗ set] κ' ∈ K', lft_alive κ')%I in
(∀ κ κ', κ ∈ K → is_Some (I !! κ') → κ ⊆ κ' → κ' ∈ K) →
(∀ κ κ', κ ∈ K → is_Some (I !! κ') → κ' ∉ K → κ' ⊂ κ → κ' ∈ K') →
Iinv K' ⊢ ([∗ set] κ ∈ K, lft_alive κ ∗ [†κ])
={⊤∖nclose mgmtN}=∗ Iinv K' ∗ [∗ set] κ ∈ K, lft_dead κ.
Proof.
intros Iinv. revert K'.
induction (collection_wf K) as [K _ IH]=> K' HK HK'.
iIntros "[HI Halive] HK". destruct (decide (K = ∅)) as [->|].
{ iModIntro. rewrite /Iinv. iFrame. by iApply (big_sepS_empty lft_dead). }
destruct (minimal_exists_L (⊂) K) as (κ & HκK & Hκmin); first done.
iDestruct (big_sepS_delete _ K with "HK") as "[[Hκalive Hκ] HK]"; first done.
specialize (IH (K ∖ {[ κ ]})). feed specialize IH.
{ set_solver +HκK. }
iAssert ⌜κ ∉ K'⌝%I with "[#]" as %HκK'.
{ iIntros (Hκ).
iDestruct (big_sepS_elem_of _ K' κ with "Halive") as "Hκalive'"; first done.
rewrite lft_alive_unfold. admit. }
iMod (IH ({[ κ ]} ∪ K') with "[HI Halive Hκalive] HK") as "[[HI Halive] Hdead]".
{ intros κ' κ''.
rewrite !elem_of_difference !elem_of_singleton=> -[? Hneq] ??.
split; first eauto. intros ->.
eapply (minimal_strict_1 _ _ _ Hκmin), strict_spec_alt; eauto. }
{ intros κ' κ'' FOO [γs'' ?]; revert FOO.
destruct (decide (κ'' = κ)) as [->|]; [set_solver +|].
rewrite not_elem_of_difference elem_of_difference
elem_of_union not_elem_of_singleton elem_of_singleton.
intros [??] [?|?]; eauto. }
{ rewrite /Iinv big_sepS_insert //. iFrame. }
iDestruct (big_sepS_insert _ K' with "Halive") as "[Hκalive Halive]"; first done.
iMod (lft_kill with "[$HI $Halive $Hdead] Hκalive Hκ")
as "[(HI&Halive&Hdead) Hκdead]".
{ intros κ' ??. eapply (HK' κ); eauto.
intros ?. eapply (minimal_strict_1 _ _ _ Hκmin); eauto. }
{ intros κ' ? [??]%strict_spec_alt.
rewrite elem_of_difference elem_of_singleton; eauto. }
iModIntro. rewrite /Iinv (big_sepS_delete _ K) //. iFrame.
Qed.
Lemma lfts_kill (I : gmap lft lft_names) (K K' : gset lft) :
let Iinv K' := (own_ilft_auth I ∗ [∗ set] κ' ∈ K', lft_alive κ')%I in
K ⊥ K' →
(∀ κ κ', κ ∈ K → is_Some (I !! κ') → κ ⊆ κ' → κ' ∈ K) →
(
∀
κ
κ'
,
is_Some
(
I
!!
κ'
)
→
κ'
∉
K
→
κ
∈
K
→
κ'
⊂
κ
→
κ'
∈
K'
)
→
(∀ κ κ',
κ ∈ K →
is_Some (I !! κ') → κ' ∉ K → κ' ⊂ κ → κ' ∈ K') →
Iinv K' ⊢ ([∗ set] κ ∈ K, lft_alive κ ∗ [†κ])
={⊤∖nclose mgmtN}=∗ Iinv K' ∗ [∗ set] κ ∈ K, lft_dead κ.
Proof.
...
...
@@ -564,11 +676,11 @@ Proof.
rewrite !elem_of_difference !elem_of_singleton=> -[? Hneq] ??.
split; first eauto. intros ->.
eapply (minimal_strict_1 _ _ _ Hκmin), strict_spec_alt; eauto. }
{
intros
κ'
κ''
[
γs''
?]
.
{ intros κ' κ''
FOO
[γs'' ?]
; revert FOO
.
destruct (decide (κ'' = κ)) as [->|]; [set_solver +|].
rewrite not_elem_of_difference elem_of_difference
elem_of_union not_elem_of_singleton elem_of_singleton.
intros
[?
|
?]
[??];
eauto
.
}
intros [??] [?
|
?]; eauto. }
{ rewrite /Iinv big_sepS_insert //. iFrame. }
iDestruct (big_sepS_insert _ K' with "Halive") as "[Hκalive Halive]"; first done.
iMod (lft_kill with "[$HI $Halive $Hdead] Hκalive Hκ")
...
...
@@ -579,6 +691,7 @@ Proof.
rewrite elem_of_difference elem_of_singleton; eauto. }
iModIntro. rewrite /Iinv (big_sepS_delete _ K) //. iFrame.
Qed.
*)
Lemma
foobar
(
E1
E2
E3
:
coPset
)
:
E1
⊆
E3
→
E1
∖
E2
⊆
E3
.
Proof
.
set_solver
.
Qed
.
...
...
@@ -588,9 +701,30 @@ Lemma fooz (E : coPset) (N1 N2 : namespace) :
Proof
.
set_solver
.
Qed
.
Hint
Resolve
fooz
:
ndisj
.
Definition
kill_set
(
I
:
gmap
lft
lft_names
)
(
Λ
:
atomic_lft
)
:
gset
lft
:=
filter
(
λ
κ
,
Λ
∈
κ
)
(
dom
(
gset
lft
)
I
)
.
Lemma
elem_of_kill_set
I
Λ
κ
:
κ
∈
kill_set
I
Λ
↔
Λ
∈
κ
∧
is_Some
(
I
!!
κ
)
.
Proof
.
by
rewrite
/
kill_set
elem_of_filter
elem_of_dom
.
Qed
.
Definition
down_close
(
A
:
gmap
atomic_lft
bool
)
(
I
:
gmap
lft
lft_names
)
(
K
:
gset
lft
)
:
gset
lft
:=
filter
(
λ
κ
,
κ
∉
K
∧
set_Exists
(
λ
κ'
,
κ
⊂
κ'
∧
lft_alive_in
A
κ'
)
K
)
(
dom
(
gset
lft
)
I
)
.
Lemma
elem_of_down_close
A
I
K
κ
:
κ
∈
down_close
A
I
K
↔
is_Some
(
I
!!
κ
)
∧
κ
∉
K
∧
∃
κ'
,
κ'
∈
K
∧
κ
⊂
κ'
∧
lft_alive_in
A
κ'
.
Proof
.
rewrite
/
down_close
elem_of_filter
elem_of_dom
/
set_Exists
.
tauto
.
Qed
.
Lemma
down_close_lft_alive_in
A
I
K
κ
:
κ
∈
down_close
A
I
K
→
lft_alive_in
A
κ
.
Proof
.
rewrite
elem_of_down_close
;
intros
(?
&
?
&
?
&
?
&
?
&
?)
.
eapply
lft_alive_in_subseteq
,
gmultiset_subset_subseteq
;
eauto
.
Qed
.
Lemma
lft_create
E
:
nclose
lftN
⊆
E
→
lft_ctx
=
{
E
}
=∗
∃
κ
,
1
.[
κ
]
∗
□
(
1
.[
κ
]
=
{
E
,
E
∖
nclose
lftN
}
▷=∗
[
†
κ
])
.
lft_ctx
=
{
E
}
=∗
∃
κ
,
1
.[
κ
]
∗
□
(
1
.[
κ
]
=
{
⊤
,
⊤
∖
nclose
lftN
}
▷=∗
[
†
κ
])
.
Proof
.
iIntros
(?)
"#Hmgmt"
.
iInv
mgmtN
as
(
A
I
)
"(>HA & >HI & Hinv)"
"Hclose"
.
...
...
@@ -610,33 +744,66 @@ Proof.
iModIntro
;
iExists
{[
Λ
]}
.
rewrite
{
1
}
/
lft_own
big_sepMS_singleton
.
iFrame
"HΛ"
.
clear
I
A
HΛ
.
iIntros
"!# HΛ"
.
iApply
(
step_fupd_mask_mono
E
_
_
(
E
∖
nclose
mgmtN
));
[
solve_ndisj
..|]
.
iApply
(
step_fupd_mask_mono
⊤
_
_
(
⊤∖↑
mgmtN
));
[
solve_ndisj
..|]
.
iInv
mgmtN
as
(
A
I
)
"(>HA & >HI & Hinv)"
"Hclose"
.
(*
iMod (ilft_create _ _ static with "HI HA Hinv") as (I' A') "(% & HI & HA & Hinv)".
clear A I; rename I' into I; rename A' into A.
*)
rewrite
/
lft_own
big_sepMS_singleton
.
iDestruct
(
own_valid_2
with
"HA HΛ"
)
as
%
[[
s
[?
%
leibniz_equiv
?]]
%
singleton_included
_]
%
auth_valid_discrete_2
.
iMod
(
own_update_2
with
"HA HΛ"
)
as
"[HA HΛ]"
.
{
by
eapply
auth_update
,
singleton_local_update
,
(
exclusive_local_update
_
(
Cinr
()))
.
}
iAssert
[
†
{[
Λ
]}]
%
I
with
"[HΛ]"
as
"HΛ"
.
(*
iAssert [†{[Λ]}]%I with "[HΛ]" as "#HΛ".
{ rewrite /lft_dead_own. iExists Λ. iFrame "HΛ". iPureIntro; set_solver. }
*)
iDestruct
"HΛ"
as
"#HΛ"
.
iModIntro
;
iNext
.
pose
(
K
:=
f
il
ter
(
λ
κ
,
Λ
∈
κ
)
(
dom
(
gset
lft
)
I
)
)
.
pose
(
K'
:=
{[
static
]}
:
gset
lft
)
.
pose
(
K
:=
k
il
l_set
I
Λ
)
.
pose
(
K'
:=
down_close
A
I
K
)
.
pose
(
K''
:=
dom
(
gset
lft
)
I
∖
K
∖
K'
)
.
assert
(
dom
(
gset
lft
)
I
=
K
∪
K'
∪
K''
)
as
->
.
assert
(
dom
(
gset
lft
)
I
=
K
∪
K'
∪
K''
)
as
HI
.
{
admit
.
}
rewrite
HI
.
assert
(
K
⊥
K'
)
.
admit
.
assert
(
K
∪
K'
⊥
K''
)
.
set_solver
+.
rewrite
!
big_sepS_union
//.
iDestruct
"Hinv"
as
"[[HinvΛ Hinvst] Hinv]"
.
iDestruct
(
lfts_kill
I
K
K'
with
"[$HI]"
)
as
"?"
.
{
auto
.
}
{
intros
κ
κ'
.
rewrite
/
K
.
rewrite
!
elem_of_filter
.
admit
.
}
{
intros
κ
κ'
.
rewrite
/
K
.
rewrite
!
elem_of_filter
.
admit
.
}
iDestruct
"Hinv"
as
"[[HinvK HinvD] Hinv]"
.
iAssert
([
∗
set
]
κ
∈
K'
,
lft_alive
κ
)
%
I
with
"[HinvD]"
as
"HinvD"
.
{
iApply
(
big_sepS_impl
_
_
K'
with
"[$HinvD]"
);
iIntros
"!#"
.
rewrite
/
lft_inv
.
iIntros
(
κ
Hκ
)
"[[$ _]|[_ %]]"
.
admit
.
}
iAssert
([
∗
set
]
κ
∈
K
,
lft_inv
A
κ
∗
[
†
κ
])
%
I
with
"[HinvK]"
as
"HinvK"
.
{
iApply
(
big_sepS_impl
_
_
K
with
"[$HinvK]"
);
iIntros
"!#"
.
iIntros
(
κ
[?
_]
%
elem_of_kill_set
)
"$"
.
rewrite
/
lft_dead_own
.
eauto
.
}
iMod
(
lfts_kill
A
I
K
K'
with
"[$HI $HinvD] HinvK"
)
as
"[[HI HinvD] HinvK]"
.
{
intros
κ
κ'
[??]
%
elem_of_kill_set
??
.
apply
elem_of_kill_set
.
split
;
last
done
.
by
eapply
gmultiset_elem_of_subseteq
.
}
{
intros
κ
κ'
?????
.
apply
elem_of_down_close
;
eauto
10
.
}
iMod
(
"Hclose"
with
"[-]"
)
as
"_"
;
last
first
.
{
iModIntro
.
rewrite
/
lft_dead_own
.
iExists
Λ
.
rewrite
elem_of_singleton
.
auto
.
}
iNext
.
iExists
(
<
[
Λ
:=
false
]
>
A
),
I
.
rewrite
/
own_alft_auth
fmap_insert
.
iFrame
.
rewrite
HI
!
big_sepS_union
//.
iSplitL
"HinvK HinvD"
;
first
iSplitL
"HinvK"
.
-
iApply
(
big_sepS_impl
_
_
K
with
"[$HinvK]"
);
iIntros
"!#"
.
iIntros
(
κ
[?
_]
%
elem_of_kill_set
)
"Hdead"
.
rewrite
/
lft_inv
.
iRight
.
iFrame
.
iPureIntro
.
exists
Λ
.
by
rewrite
lookup_insert
.
-
iApply
(
big_sepS_impl
_
_
K'
with
"[$HinvD]"
);
iIntros
"!#"
.
iIntros
(
κ
Hκ
)
"Halive"
.
rewrite
/
lft_inv
.
iLeft
.
iFrame
.
iPureIntro
.
cut
(
lft_alive_in
A
κ
)
.
{
intros
Halive
Λ'
?
.
apply
elem_of_down_close
in
Hκ
as
(?
&
HFOO
&
κ'
&
?
&
?
&
?)
.
move
:
HFOO
.
rewrite
elem_of_kill_set
not_and_l
=>
-
[?|[]
//
]
.
rewrite
lookup_insert_ne
;
last
by
intros
->
.
by
apply
Halive
.
}
by
eapply
down_close_lft_alive_in
.
-
iApply
(
big_sepS_impl
_
_
K''
with
"[$Hinv]"
);
iIntros
"!#"
.
rewrite
/
lft_inv
.
iIntros
(
κ
Hκ
)
"Halive"
.
Admitted
.
(*
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment