-
Tej Chajed authoredTej Chajed authored
gmap.v 13.16 KiB
(** This file implements finite maps and finite sets with keys of any countable
type. The implementation is based on [Pmap]s, radix-2 search trees. *)
From stdpp Require Export countable infinite fin_maps fin_map_dom.
From stdpp Require Import pmap mapset propset.
(* Set Default Proof Using "Type". *)
(** * The data structure *)
(** We pack a [Pmap] together with a proof that ensures that all keys correspond
to codes of actual elements of the countable type. *)
Definition gmap_wf K `{Countable K} {A} (m : Pmap A) : Prop :=
bool_decide (map_Forall (λ p _, encode (A:=K) <$> decode p = Some p) m).
Record gmap K `{Countable K} A := GMap {
gmap_car : Pmap A;
gmap_prf : gmap_wf K gmap_car
}.
Arguments GMap {_ _ _ _} _ _ : assert.
Arguments gmap_car {_ _ _ _} _ : assert.
Lemma gmap_eq `{Countable K} {A} (m1 m2 : gmap K A) :
m1 = m2 ↔ gmap_car m1 = gmap_car m2.
Proof.
split; [by intros ->|intros]. destruct m1, m2; simplify_eq/=.
f_equal; apply proof_irrel.
Qed.
Instance gmap_eq_eq `{Countable K, EqDecision A} : EqDecision (gmap K A).
Proof.
refine (λ m1 m2, cast_if (decide (gmap_car m1 = gmap_car m2)));
abstract (by rewrite gmap_eq).
Defined.
(** * Operations on the data structure *)
Instance gmap_lookup `{Countable K} {A} : Lookup K A (gmap K A) :=
λ i '(GMap m _), m !! encode i.
Instance gmap_empty `{Countable K} {A} : Empty (gmap K A) := GMap ∅ I.
Global Opaque gmap_empty.
Lemma gmap_partial_alter_wf `{Countable K} {A} (f : option A → option A) m i :
gmap_wf K m → gmap_wf K (partial_alter f (encode (A:=K) i) m).
Proof.
unfold gmap_wf; rewrite !bool_decide_spec.
intros Hm p x. destruct (decide (encode i = p)) as [<-|?].
- rewrite decode_encode; eauto.
- rewrite lookup_partial_alter_ne by done. by apply Hm.
Qed.
Instance gmap_partial_alter `{Countable K} {A} :
PartialAlter K A (gmap K A) := λ f i '(GMap m Hm),
GMap (partial_alter f (encode i) m) (gmap_partial_alter_wf f m i Hm).
Lemma gmap_fmap_wf `{Countable K} {A B} (f : A → B) m :
gmap_wf K m → gmap_wf K (f <$> m).
Proof.
unfold gmap_wf; rewrite !bool_decide_spec.
intros ? p x. rewrite lookup_fmap, fmap_Some; intros (?&?&?); eauto.
Qed.
Instance gmap_fmap `{Countable K} : FMap (gmap K) := λ A B f '(GMap m Hm),
GMap (f <$> m) (gmap_fmap_wf f m Hm).
Lemma gmap_omap_wf `{Countable K} {A B} (f : A → option B) m :
gmap_wf K m → gmap_wf K (omap f m).
Proof.
unfold gmap_wf; rewrite !bool_decide_spec.
intros ? p x; rewrite lookup_omap, bind_Some; intros (?&?&?); eauto.
Qed.
Instance gmap_omap `{Countable K} : OMap (gmap K) := λ A B f '(GMap m Hm),
GMap (omap f m) (gmap_omap_wf f m Hm).
Lemma gmap_merge_wf `{Countable K} {A B C}
(f : option A → option B → option C) m1 m2 :
let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in
gmap_wf K m1 → gmap_wf K m2 → gmap_wf K (merge f' m1 m2).
Proof.
intros f'; unfold gmap_wf; rewrite !bool_decide_spec.
intros Hm1 Hm2 p z; rewrite lookup_merge by done; intros.
destruct (m1 !! _) eqn:?, (m2 !! _) eqn:?; naive_solver.
Qed.
Instance gmap_merge `{Countable K} : Merge (gmap K) := λ A B C f '(GMap m1 Hm1) '(GMap m2 Hm2),
let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in
GMap (merge f' m1 m2) (gmap_merge_wf f m1 m2 Hm1 Hm2).
Instance gmap_to_list `{Countable K} {A} : FinMapToList K A (gmap K A) := λ '(GMap m _),
omap (λ '(i, x), (., x) <$> decode i) (map_to_list m).
(** * Instantiation of the finite map interface *)
Instance gmap_finmap `{Countable K} : FinMap K (gmap K).
Proof.
split.
- unfold lookup; intros A [m1 Hm1] [m2 Hm2] Hm.
apply gmap_eq, map_eq; intros i; simpl in *.
apply bool_decide_unpack in Hm1; apply bool_decide_unpack in Hm2.
apply option_eq; intros x; split; intros Hi.
+ pose proof (Hm1 i x Hi); simpl in *.
by destruct (decode i); simplify_eq/=; rewrite <-Hm.
+ pose proof (Hm2 i x Hi); simpl in *.
by destruct (decode i); simplify_eq/=; rewrite Hm.
- done.
- intros A f [m Hm] i; apply (lookup_partial_alter f m).
- intros A f [m Hm] i j Hs; apply (lookup_partial_alter_ne f m).
by contradict Hs; apply (inj encode).
- intros A B f [m Hm] i; apply (lookup_fmap f m).
- intros A [m Hm]; unfold map_to_list; simpl.
apply bool_decide_unpack, map_Forall_to_list in Hm; revert Hm.
induction (NoDup_map_to_list m) as [|[p x] l Hpx];
inversion 1 as [|??? Hm']; simplify_eq/=; [by constructor|].
destruct (decode p) as [i|] eqn:?; simplify_eq/=; constructor; eauto.
rewrite elem_of_list_omap; intros ([p' x']&?&?); simplify_eq/=.
feed pose proof (proj1 (Forall_forall _ _) Hm' (p',x')); simpl in *; auto.
by destruct (decode p') as [i'|]; simplify_eq/=.
- intros A [m Hm] i x; unfold map_to_list, lookup; simpl.
apply bool_decide_unpack in Hm; rewrite elem_of_list_omap; split.
+ intros ([p' x']&Hp'&?); apply elem_of_map_to_list in Hp'.
feed pose proof (Hm p' x'); simpl in *; auto.
by destruct (decode p') as [i'|] eqn:?; simplify_eq/=.
+ intros; exists (encode i,x); simpl.
by rewrite elem_of_map_to_list, decode_encode.
- intros A B f [m Hm] i; apply (lookup_omap f m).
- intros A B C f ? [m1 Hm1] [m2 Hm2] i; unfold merge, lookup; simpl.
set (f' o1 o2 := match o1, o2 with None,None => None | _, _ => f o1 o2 end).
by rewrite lookup_merge by done; destruct (m1 !! _), (m2 !! _).
Qed.
Program Instance gmap_countable
`{Countable K, Countable A} : Countable (gmap K A) := {
encode m := encode (map_to_list m : list (K * A));
decode p := list_to_map <$> decode p
}.
Next Obligation.
intros K ?? A ?? m; simpl. rewrite decode_encode; simpl.
by rewrite list_to_map_to_list.
Qed.
(** * Curry and uncurry *)
Definition gmap_curry `{Countable K1, Countable K2} {A} :
gmap K1 (gmap K2 A) → gmap (K1 * K2) A :=
map_fold (λ i1 m' macc,
map_fold (λ i2 x, <[(i1,i2):=x]>) macc m') ∅.
Definition gmap_uncurry `{Countable K1, Countable K2} {A} :
gmap (K1 * K2) A → gmap K1 (gmap K2 A) :=
map_fold (λ '(i1, i2) x,
partial_alter (Some ∘ <[i2:=x]> ∘ default ∅) i1) ∅.
Section curry_uncurry.
Context `{Countable K1, Countable K2} {A : Type}.
(* FIXME: the type annotations `option (gmap K2 A)` are silly. Maybe these are
a consequence of Coq bug #5735 *)
Lemma lookup_gmap_curry (m : gmap K1 (gmap K2 A)) i j :
gmap_curry m !! (i,j) = (m !! i : option (gmap K2 A)) ≫= (.!! j).
Proof.
apply (map_fold_ind (λ mr m, mr !! (i,j) = m !! i ≫= (.!! j))).
{ by rewrite !lookup_empty. }
clear m; intros i' m2 m m12 Hi' IH.
apply (map_fold_ind (λ m2r m2, m2r !! (i,j) = <[i':=m2]> m !! i ≫= (.!! j))).
{ rewrite IH. destruct (decide (i' = i)) as [->|].
- rewrite lookup_insert, Hi'; simpl; by rewrite lookup_empty.
- by rewrite lookup_insert_ne by done. }
intros j' y m2' m12' Hj' IH'. destruct (decide (i = i')) as [->|].
- rewrite lookup_insert; simpl. destruct (decide (j = j')) as [->|].
+ by rewrite !lookup_insert.
+ by rewrite !lookup_insert_ne, IH', lookup_insert by congruence.
- by rewrite !lookup_insert_ne, IH', lookup_insert_ne by congruence.
Qed.
Lemma lookup_gmap_uncurry (m : gmap (K1 * K2) A) i j :
(gmap_uncurry m !! i : option (gmap K2 A)) ≫= (.!! j) = m !! (i, j).
Proof.
apply (map_fold_ind (λ mr m, mr !! i ≫= (.!! j) = m !! (i, j))).
{ by rewrite !lookup_empty. }
clear m; intros [i' j'] x m12 mr Hij' IH.
destruct (decide (i = i')) as [->|].
- rewrite lookup_partial_alter. destruct (decide (j = j')) as [->|].
+ destruct (mr !! i'); simpl; by rewrite !lookup_insert.
+ destruct (mr !! i'); simpl; by rewrite !lookup_insert_ne by congruence.
- by rewrite lookup_partial_alter_ne, lookup_insert_ne by congruence.
Qed.
Lemma lookup_gmap_uncurry_None (m : gmap (K1 * K2) A) i :
gmap_uncurry m !! i = None ↔ (∀ j, m !! (i, j) = None).
Proof.
apply (map_fold_ind (λ mr m, mr !! i = None ↔ (∀ j, m !! (i, j) = None)));
[done|].
clear m; intros [i' j'] x m12 mr Hij' IH.
destruct (decide (i = i')) as [->|].
- split; [by rewrite lookup_partial_alter|].
intros Hi. specialize (Hi j'). by rewrite lookup_insert in Hi.
- rewrite lookup_partial_alter_ne, IH; [|done]. apply forall_proper.
intros j. rewrite lookup_insert_ne; [done|congruence].
Qed.
Lemma gmap_curry_uncurry (m : gmap (K1 * K2) A) :
gmap_curry (gmap_uncurry m) = m.
Proof.
apply map_eq; intros [i j]. by rewrite lookup_gmap_curry, lookup_gmap_uncurry.
Qed.
Lemma gmap_uncurry_non_empty (m : gmap (K1 * K2) A) i x :
gmap_uncurry m !! i = Some x → x ≠ ∅.
Proof.
intros Hm ->. eapply eq_None_not_Some; [|by eexists].
eapply lookup_gmap_uncurry_None; intros j.
by rewrite <-lookup_gmap_uncurry, Hm.
Qed.
Lemma gmap_uncurry_curry_non_empty (m : gmap K1 (gmap K2 A)) :
(∀ i x, m !! i = Some x → x ≠ ∅) →
gmap_uncurry (gmap_curry m) = m.
Proof.
intros Hne. apply map_eq; intros i. destruct (m !! i) as [m2|] eqn:Hm.
- destruct (gmap_uncurry (gmap_curry m) !! i) as [m2'|] eqn:Hcurry.
+ f_equal. apply map_eq. intros j.
trans ((gmap_uncurry (gmap_curry m) !! i : option (gmap _ _)) ≫= (.!! j)).
{ by rewrite Hcurry. }
by rewrite lookup_gmap_uncurry, lookup_gmap_curry, Hm.
+ rewrite lookup_gmap_uncurry_None in Hcurry.
exfalso; apply (Hne i m2), map_eq; [done|intros j].
by rewrite lookup_empty, <-(Hcurry j), lookup_gmap_curry, Hm.
- apply lookup_gmap_uncurry_None; intros j. by rewrite lookup_gmap_curry, Hm.
Qed.
End curry_uncurry.
(** * Finite sets *)
Definition gset K `{Countable K} := mapset (gmap K).
Section gset.
Context `{Countable K}.
Global Instance gset_elem_of: ElemOf K (gset K) := _.
Global Instance gset_empty : Empty (gset K) := _.
Global Instance gset_singleton : Singleton K (gset K) := _.
Global Instance gset_union: Union (gset K) := _.
Global Instance gset_intersection: Intersection (gset K) := _.
Global Instance gset_difference: Difference (gset K) := _.
Global Instance gset_elements: Elements K (gset K) := _.
Global Instance gset_leibniz : LeibnizEquiv (gset K) := _.
Global Instance gset_semi_set : SemiSet K (gset K) | 1 := _.
Global Instance gset_set : Set_ K (gset K) | 1 := _.
Global Instance gset_fin_set : FinSet K (gset K) := _.
Global Instance gset_eq_dec : EqDecision (gset K) := _.
Global Instance gset_countable : Countable (gset K) := _.
Global Instance gset_equiv_dec : RelDecision (≡@{gset K}) | 1 := _.
Global Instance gset_elem_of_dec : RelDecision (∈@{gset K}) | 1 := _.
Global Instance gset_disjoint_dec : RelDecision (##@{gset K}) := _.
Global Instance gset_subseteq_dec : RelDecision (⊆@{gset K}) := _.
Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := mapset_dom.
Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K) := mapset_dom_spec.
Definition gset_to_gmap {A} (x : A) (X : gset K) : gmap K A :=
(λ _, x) <$> mapset_car X.
Lemma lookup_gset_to_gmap {A} (x : A) (X : gset K) i :
gset_to_gmap x X !! i = guard (i ∈ X); Some x.
Proof.
destruct X as [X].
unfold gset_to_gmap, gset_elem_of, elem_of, mapset_elem_of; simpl.
rewrite lookup_fmap.
case_option_guard; destruct (X !! i) as [[]|]; naive_solver.
Qed.
Lemma lookup_gset_to_gmap_Some {A} (x : A) (X : gset K) i y :
gset_to_gmap x X !! i = Some y ↔ i ∈ X ∧ x = y.
Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.
Lemma lookup_gset_to_gmap_None {A} (x : A) (X : gset K) i :
gset_to_gmap x X !! i = None ↔ i ∉ X.
Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.
Lemma gset_to_gmap_empty {A} (x : A) : gset_to_gmap x ∅ = ∅.
Proof. apply fmap_empty. Qed.
Lemma gset_to_gmap_union_singleton {A} (x : A) i Y :
gset_to_gmap x ({[ i ]} ∪ Y) = <[i:=x]>(gset_to_gmap x Y).
Proof.
apply map_eq; intros j; apply option_eq; intros y.
rewrite lookup_insert_Some, !lookup_gset_to_gmap_Some, elem_of_union,
elem_of_singleton; destruct (decide (i = j)); intuition.
Qed.
Lemma gset_to_gmap_difference_singleton {A} (x : A) i Y :
gset_to_gmap x (Y ∖ {[i]}) = delete i (gset_to_gmap x Y).
Proof.
apply map_eq; intros j; apply option_eq; intros y.
rewrite lookup_delete_Some, !lookup_gset_to_gmap_Some, elem_of_difference,
elem_of_singleton; destruct (decide (i = j)); intuition.
Qed.
Lemma fmap_gset_to_gmap {A B} (f : A → B) (X : gset K) (x : A) :
f <$> gset_to_gmap x X = gset_to_gmap (f x) X.
Proof.
apply map_eq; intros j. rewrite lookup_fmap, !lookup_gset_to_gmap.
by simplify_option_eq.
Qed.
Lemma gset_to_gmap_dom {A B} (m : gmap K A) (y : B) :
gset_to_gmap y (dom _ m) = const y <$> m.
Proof.
apply map_eq; intros j. rewrite lookup_fmap, lookup_gset_to_gmap.
destruct (m !! j) as [x|] eqn:?.
- by rewrite option_guard_True by (rewrite elem_of_dom; eauto).
- by rewrite option_guard_False by (rewrite not_elem_of_dom; eauto).
Qed.
Lemma dom_gset_to_gmap {A} (X : gset K) (x : A) :
dom _ (gset_to_gmap x X) = X.
Proof.
induction X as [| y X not_in IH] using set_ind_L.
- rewrite gset_to_gmap_empty, dom_empty_L; done.
- rewrite gset_to_gmap_union_singleton, dom_insert_L, IH; done.
Qed.
End gset.
Typeclasses Opaque gset.