Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
1426e843
Commit
1426e843
authored
11 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More properties about the rationals Qc.
parent
b6ad5868
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/numbers.v
+64
-19
64 additions, 19 deletions
theories/numbers.v
with
64 additions
and
19 deletions
theories/numbers.v
+
64
−
19
View file @
1426e843
...
...
@@ -280,47 +280,92 @@ Qed.
Close
Scope
Z_scope
.
(** * Notations and properties of [Qc] *)
Notation
"2"
:=
(
1
+
1
)
%
Qc
:
Qc_scope
.
Open
Scope
Qc_scope
.
Notation
"2"
:=
(
1
+
1
)
:
Qc_scope
.
Infix
"≤"
:=
Qcle
:
Qc_scope
.
Notation
"x ≤ y ≤ z"
:=
(
x
≤
y
∧
y
≤
z
)
%
Qc
:
Qc_scope
.
Notation
"x ≤ y < z"
:=
(
x
≤
y
∧
y
<
z
)
%
Qc
:
Qc_scope
.
Notation
"x < y < z"
:=
(
x
<
y
∧
y
<
z
)
%
Qc
:
Qc_scope
.
Notation
"x < y ≤ z"
:=
(
x
<
y
∧
y
≤
z
)
%
Qc
:
Qc_scope
.
Notation
"x ≤ y ≤ z"
:=
(
x
≤
y
∧
y
≤
z
)
:
Qc_scope
.
Notation
"x ≤ y < z"
:=
(
x
≤
y
∧
y
<
z
)
:
Qc_scope
.
Notation
"x < y < z"
:=
(
x
<
y
∧
y
<
z
)
:
Qc_scope
.
Notation
"x < y ≤ z"
:=
(
x
<
y
∧
y
≤
z
)
:
Qc_scope
.
Notation
"(≤)"
:=
Qcle
(
only
parsing
)
:
Qc_scope
.
Notation
"(<)"
:=
Qclt
(
only
parsing
)
:
Qc_scope
.
Instance
Qc_eq_dec
:
∀
x
y
:
Qc
,
Decision
(
x
=
y
)
:=
Qc_eq_dec
.
Program
Instance
Qc_le_dec
(
x
y
:
Qc
)
:
Decision
(
x
≤
y
)
%
Qc
:=
Program
Instance
Qc_le_dec
(
x
y
:
Qc
)
:
Decision
(
x
≤
y
)
:=
if
Qclt_le_dec
y
x
then
right
_
else
left
_
.
Next
Obligation
.
by
apply
Qclt_not_le
.
Qed
.
Program
Instance
Qc_lt_dec
(
x
y
:
Qc
)
:
Decision
(
x
<
y
)
%
Qc
:=
Program
Instance
Qc_lt_dec
(
x
y
:
Qc
)
:
Decision
(
x
<
y
)
:=
if
Qclt_le_dec
x
y
then
left
_
else
right
_
.
Next
Obligation
.
by
apply
Qcle_not_lt
.
Qed
.
Instance
:
Reflexive
Qcle
.
Proof
.
red
.
apply
Qcle_refl
.
Qed
.
Instance
:
Transitive
Qcle
.
Proof
.
red
.
apply
Qcle_trans
.
Qed
.
Instance
:
PartialOrder
(
≤
)
.
Proof
.
repeat
split
;
red
.
apply
Qcle_refl
.
apply
Qcle_trans
.
apply
Qcle_antisym
.
Qed
.
Instance
:
StrictOrder
(
<
)
.
Proof
.
split
;
red
.
intros
x
Hx
.
by
destruct
(
Qclt_not_eq
x
x
)
.
apply
Qclt_trans
.
Qed
.
Lemma
Qcle_ngt
(
x
y
:
Qc
)
:
(
x
≤
y
↔
¬
y
<
x
)
%
Qc
.
Lemma
Qcle_ngt
(
x
y
:
Qc
)
:
x
≤
y
↔
¬
y
<
x
.
Proof
.
split
;
auto
using
Qcle_not_lt
,
Qcnot_lt_le
.
Qed
.
Lemma
Qclt_nge
(
x
y
:
Qc
)
:
(
x
<
y
↔
¬
y
≤
x
)
%
Qc
.
Lemma
Qclt_nge
(
x
y
:
Qc
)
:
x
<
y
↔
¬
y
≤
x
.
Proof
.
split
;
auto
using
Qclt_not_le
,
Qcnot_le_lt
.
Qed
.
Lemma
Qcplus_le_mono_l
(
x
y
z
:
Qc
)
:
(
x
≤
y
↔
z
+
x
≤
z
+
y
)
%
Qc
.
Lemma
Qcplus_le_mono_l
(
x
y
z
:
Qc
)
:
x
≤
y
↔
z
+
x
≤
z
+
y
.
Proof
.
split
;
intros
.
*
by
apply
Qcplus_le_compat
.
*
replace
x
with
((
0
-
z
)
+
(
z
+
x
))
%
Qc
by
ring
.
replace
y
with
((
0
-
z
)
+
(
z
+
y
))
%
Qc
by
ring
.
*
replace
x
with
((
0
-
z
)
+
(
z
+
x
))
by
ring
.
replace
y
with
((
0
-
z
)
+
(
z
+
y
))
by
ring
.
by
apply
Qcplus_le_compat
.
Qed
.
Lemma
Qcplus_le_mono_r
(
x
y
z
:
Qc
)
:
(
x
≤
y
↔
x
+
z
≤
y
+
z
)
%
Qc
.
Lemma
Qcplus_le_mono_r
(
x
y
z
:
Qc
)
:
x
≤
y
↔
x
+
z
≤
y
+
z
.
Proof
.
rewrite
!
(
Qcplus_comm
_
z
)
.
apply
Qcplus_le_mono_l
.
Qed
.
Lemma
Qcplus_lt_mono_l
(
x
y
z
:
Qc
)
:
(
x
<
y
↔
z
+
x
<
z
+
y
)
%
Qc
.
Lemma
Qcplus_lt_mono_l
(
x
y
z
:
Qc
)
:
x
<
y
↔
z
+
x
<
z
+
y
.
Proof
.
by
rewrite
!
Qclt_nge
,
<-
Qcplus_le_mono_l
.
Qed
.
Lemma
Qcplus_lt_mono_r
(
x
y
z
:
Qc
)
:
(
x
<
y
↔
x
+
z
<
y
+
z
)
%
Qc
.
Lemma
Qcplus_lt_mono_r
(
x
y
z
:
Qc
)
:
x
<
y
↔
x
+
z
<
y
+
z
.
Proof
.
by
rewrite
!
Qclt_nge
,
<-
Qcplus_le_mono_r
.
Qed
.
Instance
:
Injective
(
=
)
(
=
)
Qcopp
.
Proof
.
intros
x
y
H
.
by
rewrite
<-
(
Qcopp_involutive
x
),
H
,
Qcopp_involutive
.
Qed
.
Instance
:
Injective
(
=
)
(
=
)
(
Qcplus
z
)
.
Proof
.
intros
z
x
y
H
.
by
apply
(
anti_symmetric
(
≤
));
rewrite
(
Qcplus_le_mono_l
_
_
z
),
H
.
Qed
.
Lemma
Qcplus_pos_nonneg
(
x
y
:
Qc
)
:
0
<
x
→
0
≤
y
→
0
<
x
+
y
.
Proof
.
intros
.
apply
Qclt_le_trans
with
(
x
+
0
);
[
by
rewrite
Qcplus_0_r
|]
.
by
apply
Qcplus_le_mono_l
.
Qed
.
Lemma
Qcplus_nonneg_pos
(
x
y
:
Qc
)
:
0
≤
x
→
0
<
y
→
0
<
x
+
y
.
Proof
.
rewrite
(
Qcplus_comm
x
)
.
auto
using
Qcplus_pos_nonneg
.
Qed
.
Lemma
Qcplus_pos_pos
(
x
y
:
Qc
)
:
0
<
x
→
0
<
y
→
0
<
x
+
y
.
Proof
.
auto
using
Qcplus_pos_nonneg
,
Qclt_le_weak
.
Qed
.
Lemma
Qcplus_nonneg_nonneg
(
x
y
:
Qc
)
:
0
≤
x
→
0
≤
y
→
0
≤
x
+
y
.
Proof
.
intros
.
transitivity
(
x
+
0
);
[
by
rewrite
Qcplus_0_r
|]
.
by
apply
Qcplus_le_mono_l
.
Qed
.
Lemma
Qcplus_neg_nonpos
(
x
y
:
Qc
)
:
x
<
0
→
y
≤
0
→
x
+
y
<
0
.
Proof
.
intros
.
apply
Qcle_lt_trans
with
(
x
+
0
);
[|
by
rewrite
Qcplus_0_r
]
.
by
apply
Qcplus_le_mono_l
.
Qed
.
Lemma
Qcplus_nonpos_neg
(
x
y
:
Qc
)
:
x
≤
0
→
y
<
0
→
x
+
y
<
0
.
Proof
.
rewrite
(
Qcplus_comm
x
)
.
auto
using
Qcplus_neg_nonpos
.
Qed
.
Lemma
Qcplus_neg_neg
(
x
y
:
Qc
)
:
x
<
0
→
y
<
0
→
x
+
y
<
0
.
Proof
.
auto
using
Qcplus_nonpos_neg
,
Qclt_le_weak
.
Qed
.
Lemma
Qcplus_nonpos_nonpos
(
x
y
:
Qc
)
:
x
≤
0
→
y
≤
0
→
x
+
y
≤
0
.
Proof
.
intros
.
transitivity
(
x
+
0
);
[|
by
rewrite
Qcplus_0_r
]
.
by
apply
Qcplus_le_mono_l
.
Qed
.
Close
Scope
Qc_scope
.
(** * Conversions *)
Lemma
Z_to_nat_nonpos
x
:
(
x
≤
0
)
%
Z
→
Z
.
to_nat
x
=
0
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment