Skip to content
Snippets Groups Projects
Commit 1d074701 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Add `collection_map` and some basic theory about it.

This makes some proress on #21. Still, the question remains if a more
generic solution exists.
parent 18c2d6e8
No related branches found
No related tags found
No related merge requests found
Pipeline #12074 passed
......@@ -16,6 +16,11 @@ Instance collection_filter
of_list (filter P (elements X)).
Typeclasses Opaque collection_filter.
Definition collection_map `{Elements A C, Singleton B D, Empty D, Union D}
(f : A B) (X : C) : D :=
of_list (f <$> elements X).
Typeclasses Opaque collection_map.
Section fin_collection.
Context `{FinCollection A C}.
Implicit Types X Y : C.
......@@ -248,6 +253,39 @@ Section filter.
End leibniz_equiv.
End filter.
(** * Map *)
Section map.
Context `{Collection B D}.
Lemma elem_of_map (f : A B) (X : C) y :
y collection_map (D:=D) f X x, y = f x x X.
Proof.
unfold collection_map. rewrite elem_of_of_list, elem_of_list_fmap.
by setoid_rewrite elem_of_elements.
Qed.
Global Instance set_unfold_map (f : A B) (X : C) (P : A Prop) :
( y, SetUnfold (y X) (P y))
SetUnfold (x collection_map (D:=D) f X) ( y, x = f y P y).
Proof. constructor. rewrite elem_of_map; naive_solver. Qed.
Global Instance collection_map_proper :
Proper (pointwise_relation _ (=) ==> () ==> ()) (collection_map (C:=C) (D:=D)).
Proof. intros f g ? X Y. set_unfold; naive_solver. Qed.
Global Instance collection_map_mono :
Proper (pointwise_relation _ (=) ==> () ==> ()) (collection_map (C:=C) (D:=D)).
Proof. intros f g ? X Y. set_unfold; naive_solver. Qed.
Lemma elem_of_map_1 (f : A B) (X : C) (y : B) :
y collection_map (D:=D) f X x, y = f x x X.
Proof. set_solver. Qed.
Lemma elem_of_map_2 (f : A B) (X : C) (x : A) :
x X f x collection_map (D:=D) f X.
Proof. set_solver. Qed.
Lemma elem_of_map_2_alt (f : A B) (X : C) (x : A) (y : B) :
x X y = f x y collection_map (D:=D) f X.
Proof. set_solver. Qed.
End map.
(** * Decision procedures *)
Lemma set_Forall_elements P X : set_Forall P X Forall P (elements X).
Proof. rewrite Forall_forall. by setoid_rewrite elem_of_elements. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment