Skip to content
Snippets Groups Projects
Commit 3666e81e authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge branch 'better-list-countable' into 'master'

More efficient list encoding for Countable

See merge request !62
parents 03127e9d 9b209c98
No related branches found
No related tags found
1 merge request!62More efficient list encoding for Countable
Pipeline #15544 passed
...@@ -212,62 +212,16 @@ Next Obligation. ...@@ -212,62 +212,16 @@ Next Obligation.
Qed. Qed.
(** ** Lists *) (** ** Lists *)
(* Lists are encoded as 1 separated sequences of 0s corresponding to the unary Global Program Instance list_countable `{Countable A} : Countable (list A) :=
representation of the elements. *) {| encode xs := positives_flatten (encode <$> xs);
Fixpoint list_encode `{Countable A} (acc : positive) (l : list A) : positive := decode p := positives positives_unflatten p;
match l with mapM decode positives; |}.
| [] => acc
| x :: l => list_encode (Nat.iter (encode_nat x) (~0) (acc~1)) l
end.
Fixpoint list_decode `{Countable A} (acc : list A)
(n : nat) (p : positive) : option (list A) :=
match p with
| 1 => Some acc
| p~0 => list_decode acc (S n) p
| p~1 => x decode_nat n; list_decode (x :: acc) O p
end.
Lemma x0_iter_x1 n acc : Nat.iter n (~0) acc~1 = acc ++ Nat.iter n (~0) 3.
Proof. by induction n; f_equal/=. Qed.
Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc :
list_encode acc (l1 ++ l2) = list_encode acc l1 ++ list_encode 1 l2.
Proof.
revert acc; induction l1; simpl; auto.
induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|].
by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1.
Qed.
Program Instance list_countable `{Countable A} : Countable (list A) :=
{| encode := list_encode 1; decode := list_decode [] 0 |}.
Next Obligation. Next Obligation.
intros A ??; simpl. intros A EqA CA xs.
assert ( m acc n p, list_decode acc n (Nat.iter m (~0) p) simpl.
= list_decode acc (n + m) p) as decode_iter. rewrite positives_unflatten_flatten.
{ induction m as [|m IH]; intros acc n p; simpl; [by rewrite Nat.add_0_r|]. simpl.
by rewrite IH, Nat.add_succ_r. } apply (mapM_fmap_Some _ _ _ decode_encode).
cut ( l acc, list_decode acc 0 (list_encode 1 l) = Some (l ++ acc))%list.
{ by intros help l; rewrite help, (right_id_L _ _). }
induction l as [|x l IH] using @rev_ind; intros acc; [done|].
rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl.
by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _).
Qed.
Lemma list_encode_app `{Countable A} (l1 l2 : list A) :
encode (l1 ++ l2)%list = encode l1 ++ encode l2.
Proof. apply list_encode_app'. Qed.
Lemma list_encode_cons `{Countable A} x (l : list A) :
encode (x :: l) = Nat.iter (encode_nat x) (~0) 3 ++ encode l.
Proof. apply (list_encode_app' [_]). Qed.
Lemma list_encode_suffix `{Countable A} (l k : list A) :
l `suffix_of` k q, encode k = q ++ encode l.
Proof. intros [l' ->]; exists (encode l'); apply list_encode_app. Qed.
Lemma list_encode_suffix_eq `{Countable A} q1 q2 (l1 l2 : list A) :
length l1 = length l2 q1 ++ encode l1 = q2 ++ encode l2 l1 = l2.
Proof.
revert q1 q2 l2; induction l1 as [|a1 l1 IH];
intros q1 q2 [|a2 l2] ?; simplify_eq/=; auto.
rewrite !list_encode_cons, !(assoc _); intros Hl.
assert (l1 = l2) as <- by eauto; clear IH; f_equal.
apply (inj encode_nat); apply (inj (++ encode l1)) in Hl; revert Hl; clear.
generalize (encode_nat a2).
induction (encode_nat a1); intros [|?] ?; naive_solver.
Qed. Qed.
(** ** Numbers *) (** ** Numbers *)
......
...@@ -354,6 +354,42 @@ Section list_set. ...@@ -354,6 +354,42 @@ Section list_set.
end. end.
End list_set. End list_set.
(* These next functions allow to efficiently encode lists of positives (bit strings)
into a single positive and go in the other direction as well. This is for
example used for the countable instance of lists and in namespaces.
The main functions are positives_flatten and positives_unflatten. *)
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
match xs with
| [] => acc
| x :: xs => positives_flatten_go xs (acc~1~0 ++ Preverse (Pdup x))
end.
(** Flatten a list of positives into a single positive by
duplicating the bits of each element, so that
* 0 -> 00
* 1 -> 11
and then separating each element with 10. *)
Definition positives_flatten (xs : list positive) : positive :=
positives_flatten_go xs 1.
Fixpoint positives_unflatten_go
(p : positive)
(acc_xs : list positive)
(acc_elm : positive)
: option (list positive) :=
match p with
| 1 => Some acc_xs
| p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
| p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
| p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
| _ => None
end%positive.
(** Unflatten a positive into a list of positives, assuming the encoding
used by positives_flatten. *)
Definition positives_unflatten (p : positive) : option (list positive) :=
positives_unflatten_go p [] 1.
(** * Basic tactics on lists *) (** * Basic tactics on lists *)
(** The tactic [discriminate_list] discharges a goal if it submseteq (** The tactic [discriminate_list] discharges a goal if it submseteq
a list equality involving [(::)] and [(++)] of two lists that have a different a list equality involving [(::)] and [(++)] of two lists that have a different
...@@ -3625,6 +3661,115 @@ Instance TCForall_app {A} (P : A → Prop) xs ys : ...@@ -3625,6 +3661,115 @@ Instance TCForall_app {A} (P : A → Prop) xs ys :
TCForall P xs TCForall P ys TCForall P (xs ++ ys). TCForall P xs TCForall P ys TCForall P (xs ++ ys).
Proof. rewrite !TCForall_Forall. apply Forall_app_2. Qed. Proof. rewrite !TCForall_Forall. apply Forall_app_2. Qed.
Section positives_flatten_unflatten.
Local Open Scope positive_scope.
Lemma positives_flatten_go_app xs acc :
positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
Proof.
revert acc.
induction xs as [|x xs IH]; intros acc; simpl.
- reflexivity.
- rewrite IH.
rewrite (IH (6 ++ _)).
rewrite 2!(assoc_L (++)).
reflexivity.
Qed.
Lemma positives_unflatten_go_app p suffix xs acc :
positives_unflatten_go (suffix ++ Preverse (Pdup p)) xs acc =
positives_unflatten_go suffix xs (acc ++ p).
Proof.
revert suffix acc.
induction p as [p IH|p IH|]; intros acc suffix; simpl.
- rewrite 2!Preverse_xI.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- rewrite 2!Preverse_xO.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- reflexivity.
Qed.
Lemma positives_unflatten_flatten_go suffix xs acc :
positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
positives_unflatten_go suffix (xs ++ acc) 1.
Proof.
revert suffix acc.
induction xs as [|x xs IH]; intros suffix acc; simpl.
- reflexivity.
- rewrite positives_flatten_go_app.
rewrite (assoc_L (++)).
rewrite IH.
rewrite (assoc_L (++)).
rewrite positives_unflatten_go_app.
simpl.
rewrite (left_id_L 1 (++)).
reflexivity.
Qed.
Lemma positives_unflatten_flatten xs :
positives_unflatten (positives_flatten xs) = Some xs.
Proof.
unfold positives_flatten, positives_unflatten.
replace (positives_flatten_go xs 1)
with (1 ++ positives_flatten_go xs 1)
by apply (left_id_L 1 (++)).
rewrite positives_unflatten_flatten_go.
simpl.
rewrite (right_id_L [] (++)%list).
reflexivity.
Qed.
Lemma positives_flatten_app xs ys :
positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
Proof.
unfold positives_flatten.
revert ys.
induction xs as [|x xs IH]; intros ys; simpl.
- rewrite (left_id_L 1 (++)).
reflexivity.
- rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
rewrite IH.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_cons x xs :
positives_flatten (x :: xs) = 1~1~0 ++ Preverse (Pdup x) ++ positives_flatten xs.
Proof.
change (x :: xs) with ([x] ++ xs)%list.
rewrite positives_flatten_app.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_suffix (l k : list positive) :
l `suffix_of` k q, positives_flatten k = q ++ positives_flatten l.
Proof.
intros [l' ->].
exists (positives_flatten l').
apply positives_flatten_app.
Qed.
Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
length xs = length ys
p1 ++ positives_flatten xs = p2 ++ positives_flatten ys
xs = ys.
Proof.
revert p1 p2 ys; induction xs as [|x xs IH];
intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
rewrite !positives_flatten_cons, !(assoc _); intros Hl.
assert (xs = ys) as <- by eauto; clear IH H; f_equal.
apply (inj (++ positives_flatten xs)) in Hl.
rewrite 2!Preverse_Pdup in Hl.
apply (Pdup_suffix_eq _ _ p1 p2) in Hl.
by apply (inj Preverse).
Qed.
End positives_flatten_unflatten.
(** * Relection over lists *) (** * Relection over lists *)
(** We define a simple data structure [rlist] to capture a syntactic (** We define a simple data structure [rlist] to capture a syntactic
representation of lists consisting of constants, applications and the nil list. representation of lists consisting of constants, applications and the nil list.
......
...@@ -14,7 +14,8 @@ Definition ndot_aux : seal (@ndot_def). by eexists. Qed. ...@@ -14,7 +14,8 @@ Definition ndot_aux : seal (@ndot_def). by eexists. Qed.
Definition ndot {A A_dec A_count}:= unseal ndot_aux A A_dec A_count. Definition ndot {A A_dec A_count}:= unseal ndot_aux A A_dec A_count.
Definition ndot_eq : @ndot = @ndot_def := seal_eq ndot_aux. Definition ndot_eq : @ndot = @ndot_def := seal_eq ndot_aux.
Definition nclose_def (N : namespace) : coPset := coPset_suffixes (encode N). Definition nclose_def (N : namespace) : coPset :=
coPset_suffixes (positives_flatten N).
Definition nclose_aux : seal (@nclose_def). by eexists. Qed. Definition nclose_aux : seal (@nclose_def). by eexists. Qed.
Instance nclose : UpClose namespace coPset := unseal nclose_aux. Instance nclose : UpClose namespace coPset := unseal nclose_aux.
Definition nclose_eq : @nclose = @nclose_def := seal_eq nclose_aux. Definition nclose_eq : @nclose = @nclose_def := seal_eq nclose_aux.
...@@ -36,17 +37,12 @@ Section namespace. ...@@ -36,17 +37,12 @@ Section namespace.
Lemma nclose_nroot : nroot = (:coPset). Lemma nclose_nroot : nroot = (:coPset).
Proof. rewrite nclose_eq. by apply (sig_eq_pi _). Qed. Proof. rewrite nclose_eq. by apply (sig_eq_pi _). Qed.
Lemma encode_nclose N : encode N (N:coPset).
Proof.
rewrite nclose_eq.
by apply elem_coPset_suffixes; exists xH; rewrite (left_id_L _ _).
Qed.
Lemma nclose_subseteq N x : N.@x (N : coPset). Lemma nclose_subseteq N x : N.@x (N : coPset).
Proof. Proof.
intros p. unfold up_close. rewrite !nclose_eq, !ndot_eq. intros p. unfold up_close. rewrite !nclose_eq, !ndot_eq.
unfold nclose_def, ndot_def; rewrite !elem_coPset_suffixes. unfold nclose_def, ndot_def; rewrite !elem_coPset_suffixes.
intros [q ->]. destruct (list_encode_suffix N (ndot_def N x)) as [q' ?]. intros [q ->]. destruct (positives_flatten_suffix N (ndot_def N x)) as [q' ?].
{ by exists [encode x]. } { by exists [encode x]. }
by exists (q ++ q')%positive; rewrite <-(assoc_L _); f_equal. by exists (q ++ q')%positive; rewrite <-(assoc_L _); f_equal.
Qed. Qed.
...@@ -54,8 +50,6 @@ Section namespace. ...@@ -54,8 +50,6 @@ Section namespace.
Lemma nclose_subseteq' E N x : N E N.@x E. Lemma nclose_subseteq' E N x : N E N.@x E.
Proof. intros. etrans; eauto using nclose_subseteq. Qed. Proof. intros. etrans; eauto using nclose_subseteq. Qed.
Lemma ndot_nclose N x : encode (N.@x) (N:coPset).
Proof. apply nclose_subseteq with x, encode_nclose. Qed.
Lemma nclose_infinite N : ¬set_finite ( N : coPset). Lemma nclose_infinite N : ¬set_finite ( N : coPset).
Proof. rewrite nclose_eq. apply coPset_suffixes_infinite. Qed. Proof. rewrite nclose_eq. apply coPset_suffixes_infinite. Qed.
...@@ -64,7 +58,7 @@ Section namespace. ...@@ -64,7 +58,7 @@ Section namespace.
intros Hxy a. unfold up_close. rewrite !nclose_eq, !ndot_eq. intros Hxy a. unfold up_close. rewrite !nclose_eq, !ndot_eq.
unfold nclose_def, ndot_def; rewrite !elem_coPset_suffixes. unfold nclose_def, ndot_def; rewrite !elem_coPset_suffixes.
intros [qx ->] [qy Hqy]. intros [qx ->] [qy Hqy].
revert Hqy. by intros [= ?%encode_inj]%list_encode_suffix_eq. revert Hqy. by intros [= ?%encode_inj]%positives_flatten_suffix_eq.
Qed. Qed.
Lemma ndot_preserve_disjoint_l N E x : N ## E N.@x ## E. Lemma ndot_preserve_disjoint_l N E x : N ## E N.@x ## E.
......
...@@ -197,6 +197,23 @@ Proof Preverse_app p (1~0). ...@@ -197,6 +197,23 @@ Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p. Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1). Proof Preverse_app p (1~1).
Lemma Preverse_involutive p :
Preverse (Preverse p) = p.
Proof.
induction p as [p IH|p IH|]; simpl.
- by rewrite Preverse_xI, Preverse_app, IH.
- by rewrite Preverse_xO, Preverse_app, IH.
- reflexivity.
Qed.
Instance Preverse_inj : Inj (=) (=) Preverse.
Proof.
intros p q eq.
rewrite <- (Preverse_involutive p).
rewrite <- (Preverse_involutive q).
by rewrite eq.
Qed.
Fixpoint Plength (p : positive) : nat := Fixpoint Plength (p : positive) : nat :=
match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end. match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
Lemma Papp_length p1 p2 : Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat. Lemma Papp_length p1 p2 : Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
...@@ -209,6 +226,59 @@ Proof. ...@@ -209,6 +226,59 @@ Proof.
- intros [z ->]. lia. - intros [z ->]. lia.
Qed. Qed.
(** Duplicate the bits of a positive, i.e. 1~0~1 -> 1~0~0~1~1 and
1~1~0~0 -> 1~1~1~0~0~0~0 *)
Fixpoint Pdup (p : positive) : positive :=
match p with
| 1 => 1
| p'~0 => (Pdup p')~0~0
| p'~1 => (Pdup p')~1~1
end.
Lemma Pdup_app p q :
Pdup (p ++ q) = Pdup p ++ Pdup q.
Proof.
revert p.
induction q as [p IH|p IH|]; intros q; simpl.
- by rewrite IH.
- by rewrite IH.
- reflexivity.
Qed.
Lemma Pdup_suffix_eq p q s1 s2 :
s1~1~0 ++ Pdup p = s2~1~0 ++ Pdup q p = q.
Proof.
revert q.
induction p as [p IH|p IH|]; intros [q|q|] eq; simplify_eq/=.
- by rewrite (IH q).
- by rewrite (IH q).
- reflexivity.
Qed.
Instance Pdup_inj : Inj (=) (=) Pdup.
Proof.
intros p q eq.
apply (Pdup_suffix_eq _ _ 1 1).
by rewrite eq.
Qed.
Lemma Preverse_Pdup p :
Preverse (Pdup p) = Pdup (Preverse p).
Proof.
induction p as [p IH|p IH|]; simpl.
- rewrite 3!Preverse_xI.
rewrite (assoc_L (++)).
rewrite IH.
rewrite Pdup_app.
reflexivity.
- rewrite 3!Preverse_xO.
rewrite (assoc_L (++)).
rewrite IH.
rewrite Pdup_app.
reflexivity.
- reflexivity.
Qed.
Close Scope positive_scope. Close Scope positive_scope.
(** * Notations and properties of [N] *) (** * Notations and properties of [N] *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment