Skip to content
Snippets Groups Projects
Commit 3caefaaa authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

New definition of contractive.

Using this new definition we can express being contractive using a
Proper. This has the following advantages:

- It makes it easier to state that a function with multiple arguments
  is contractive (in all or some arguments).
- A solve_contractive tactic can be implemented by extending the
  solve_proper tactic.
parent 3f13bd94
No related branches found
No related tags found
No related merge requests found
......@@ -185,8 +185,8 @@ Proof.
rewrite !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
rewrite (assoc_L _); f_equiv; [rewrite (comm _); simpl|done].
by rewrite replicate_plus, Permutation_middle.
rewrite (assoc_L _). f_equiv.
rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
- rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?HX, ?HY).
by rewrite <-(assoc_L (++)), <-IH.
......
......@@ -273,6 +273,7 @@ favor the second because the relation (dist) stays the same. *)
Ltac f_equiv :=
match goal with
| _ => reflexivity
| |- pointwise_relation _ _ _ _ => intros ?
(* We support matches on both sides, *if* they concern the same variable, or
variables in some relation. *)
| |- ?R (match ?x with _ => _ end) (match ?x with _ => _ end) =>
......@@ -301,26 +302,12 @@ Ltac f_equiv :=
(* In case the function symbol differs, but the arguments are the same,
maybe we have a pointwise_relation in our context. *)
| H : pointwise_relation _ ?R ?f ?g |- ?R (?f ?x) (?g ?x) => apply H
end.
(** auto_proper solves goals of the form "f _ = f _", for any relation and any
number of arguments, by repeatedly applying f_equiv and handling trivial cases.
If it cannot solve an equality, it will leave that to the user. *)
Ltac auto_equiv :=
(* Deal with "pointwise_relation" *)
repeat lazymatch goal with
| |- pointwise_relation _ _ _ _ => intros ?
end;
(* Normalize away equalities. *)
simplify_eq;
(* repeatedly apply congruence lemmas and use the equalities in the hypotheses. *)
try (f_equiv; fast_done || auto_equiv).
(** solve_proper solves goals of the form "Proper (R1 ==> R2)", for any
number of relations. All the actual work is done by auto_equiv;
solve_proper just introduces the assumptions and unfolds the first
head symbol. *)
Ltac solve_proper :=
try reflexivity.
(* The tactic [preprocess_solve_proper] unfolds the first head symbol, so that
we proceed by repeatedly using [f_equiv]. *)
Ltac preprocess_solve_proper :=
(* Introduce everything *)
intros;
repeat lazymatch goal with
......@@ -340,7 +327,14 @@ Ltac solve_proper :=
| |- ?R (?f _ _) (?f _ _) => unfold f
| |- ?R (?f _) (?f _) => unfold f
end;
solve [ auto_equiv ].
simplify_eq.
(** The tactic [solve_proper] solves goals of the form "Proper (R1 ==> R2)", for
any number of relations. The actual work is done by repeatedly applying
[f_equiv]. *)
Ltac solve_proper :=
preprocess_solve_proper;
solve [repeat (f_equiv; try eassumption)].
(** The tactic [intros_revert tac] introduces all foralls/arrows, performs tac,
and then reverts them. *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment