Skip to content
Snippets Groups Projects
Commit 3ce93174 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Hashsets based on radix-2 search trees.

parent d60affc0
No related branches found
No related tags found
No related merge requests found
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file implements finite set using hash maps. Hash sets are represented
using radix-2 search trees. Each hash bucket is thus indexed using an binary
integer of type [Z], and contains an unordered list without duplicates. *)
Require Export fin_maps.
Require Import zmap.
Record hashset {A} (hash : A Z) := Hashset {
hashset_car : Zmap (list A);
hashset_prf :
map_Forall (λ n l, Forall (λ x, hash x = n) l NoDup l) hashset_car
}.
Arguments Hashset {_ _} _ _.
Arguments hashset_car {_ _} _.
Section hashset.
Context {A : Type} {hash : A Z} `{ x y : A, Decision (x = y)}.
Instance hashset_elem_of: ElemOf A (hashset hash) := λ x m, l,
hashset_car m !! hash x = Some l x l.
Program Instance hashset_empty: Empty (hashset hash) := Hashset _.
Next Obligation. by intros n X; simpl_map. Qed.
Program Instance hashset_singleton: Singleton A (hashset hash) := λ x,
Hashset {[ hash x, [x] ]} _.
Next Obligation.
intros n l. rewrite lookup_singleton_Some. intros [<- <-].
rewrite Forall_singleton; auto using NoDup_singleton.
Qed.
Program Instance hashset_union: Union (hashset hash) := λ m1 m2,
let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in
Hashset (union_with (λ l k, Some (list_union l k)) m1 m2) _.
Next Obligation.
intros n l'. rewrite lookup_union_with_Some.
intros [[??]|[[??]|(l&k&?&?&?)]]; simplify_equality'; auto.
split; [apply Forall_list_union|apply NoDup_list_union];
first [by eapply Hm1; eauto | by eapply Hm2; eauto].
Qed.
Program Instance hashset_intersection: Intersection (hashset hash) := λ m1 m2,
let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in
Hashset (intersection_with (λ l k,
let l' := list_intersection l k in guard (l' []); Some l') m1 m2) _.
Next Obligation.
intros n l'. rewrite lookup_intersection_with_Some.
intros (?&?&?&?&?); simplify_option_equality.
split; [apply Forall_list_intersection|apply NoDup_list_intersection];
first [by eapply Hm1; eauto | by eapply Hm2; eauto].
Qed.
Program Instance hashset_difference: Difference (hashset hash) := λ m1 m2,
let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in
Hashset (difference_with (λ l k,
let l' := list_difference l k in guard (l' []); Some l') m1 m2) _.
Next Obligation.
intros n l'. rewrite lookup_difference_with_Some.
intros [[??]|(?&?&?&?&?)]; simplify_option_equality; auto.
split; [apply Forall_list_difference|apply NoDup_list_difference];
first [by eapply Hm1; eauto | by eapply Hm2; eauto].
Qed.
Instance hashset_elems: Elements A (hashset hash) := λ m,
map_to_list (hashset_car m) ≫= snd.
Global Instance: FinCollection A (hashset hash).
Proof.
split; [split; [split| |]| |].
* intros ? (?&?&?); simplify_map_equality'.
* unfold elem_of, hashset_elem_of, singleton, hashset_singleton; simpl.
intros x y. setoid_rewrite lookup_singleton_Some. split.
{ by intros (?&[? <-]&?); decompose_elem_of_list. }
intros ->; eexists [y]. by rewrite elem_of_list_singleton.
* unfold elem_of, hashset_elem_of, union, hashset_union.
intros [m1 Hm1] [m2 Hm2] x; simpl; setoid_rewrite lookup_union_with_Some.
split.
{ intros (?&[[]|[[]|(l&k&?&?&?)]]&Hx); simplify_equality'; eauto.
rewrite elem_of_list_union in Hx; destruct Hx; eauto. }
intros [(l&?&?)|(k&?&?)].
+ destruct (m2 !! hash x) as [k|]; eauto.
exists (list_union l k). rewrite elem_of_list_union. naive_solver.
+ destruct (m1 !! hash x) as [l|]; eauto 6.
exists (list_union l k). rewrite elem_of_list_union. naive_solver.
* unfold elem_of, hashset_elem_of, intersection, hashset_intersection.
intros [m1 ?] [m2 ?] x; simpl.
setoid_rewrite lookup_intersection_with_Some. split.
{ intros (?&(l&k&?&?&?)&Hx); simplify_option_equality.
rewrite elem_of_list_intersection in Hx; naive_solver. }
intros [(l&?&?) (k&?&?)]. assert (x list_intersection l k)
by (by rewrite elem_of_list_intersection).
exists (list_intersection l k); split; [exists l k|]; split_ands; auto.
by rewrite option_guard_True by eauto using elem_of_not_nil.
* unfold elem_of, hashset_elem_of, intersection, hashset_intersection.
intros [m1 ?] [m2 ?] x; simpl.
setoid_rewrite lookup_difference_with_Some. split.
{ intros (l'&[[??]|(l&k&?&?&?)]&Hx); simplify_option_equality;
rewrite ?elem_of_list_difference in Hx; naive_solver. }
intros [(l&?&?) Hm2]; destruct (m2 !! hash x) as [k|] eqn:?; eauto.
destruct (decide (x k)); [destruct Hm2; eauto|].
assert (x list_difference l k) by (by rewrite elem_of_list_difference).
exists (list_difference l k); split; [right; exists l k|]; split_ands; auto.
by rewrite option_guard_True by eauto using elem_of_not_nil.
* unfold elem_of at 2, hashset_elem_of, elements, hashset_elems.
intros [m Hm] x; simpl. setoid_rewrite elem_of_list_bind. split.
{ intros ([n l]&Hx&Hn); simpl in *; rewrite elem_of_map_to_list in Hn.
cut (hash x = n); [intros <-; eauto|].
eapply (Forall_forall (λ x, hash x = n) l); eauto. eapply Hm; eauto. }
intros (l&?&?). exists (hash x, l); simpl. by rewrite elem_of_map_to_list.
* unfold elements, hashset_elems. intros [m Hm]; simpl.
rewrite map_Forall_to_list in Hm. generalize (NoDup_fst_map_to_list m).
induction Hm as [|[n l] m' [??]];
simpl; inversion_clear 1 as [|?? Hn]; [constructor|].
apply NoDup_app; split_ands; eauto.
setoid_rewrite elem_of_list_bind; intros x ? ([n' l']&?&?); simpl in *.
assert (hash x = n hash x = n') as [??]; subst.
{ split; [eapply (Forall_forall (λ x, hash x = n) l); eauto|].
eapply (Forall_forall (λ x, hash x = n') l'); eauto.
rewrite Forall_forall in Hm. eapply (Hm (_,_)); eauto. }
destruct Hn; rewrite elem_of_list_fmap; exists (hash x, l'); eauto.
Qed.
End hashset.
(** These instances are declared using [Hint Extern] to avoid too
eager type class search. *)
Hint Extern 1 (ElemOf _ (hashset _)) =>
eapply @hashset_elem_of : typeclass_instances.
Hint Extern 1 (Empty (hashset _)) =>
eapply @hashset_empty : typeclass_instances.
Hint Extern 1 (Singleton _ (hashset _)) =>
eapply @hashset_singleton : typeclass_instances.
Hint Extern 1 (Union (hashset _)) =>
eapply @hashset_union : typeclass_instances.
Hint Extern 1 (Intersection (hashset _)) =>
eapply @hashset_intersection : typeclass_instances.
Hint Extern 1 (Difference (hashset _)) =>
eapply @hashset_difference : typeclass_instances.
Hint Extern 1 (Elements _ (hashset _)) =>
eapply @hashset_elems : typeclass_instances.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment