Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
47756278
Commit
47756278
authored
1 year ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Simplify proof of `submseteq_app_inv_r`.
parent
f34a9e18
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#82314
passed
1 year ago
Stage: build
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
stdpp/list.v
+1
-10
1 addition, 10 deletions
stdpp/list.v
with
1 addition
and
10 deletions
stdpp/list.v
+
1
−
10
View file @
47756278
...
...
@@ -2726,16 +2726,7 @@ Proof.
intros
(?
&
E
%
(
inj
(
cons
y
))
&
?)
.
apply
IH
.
by
rewrite
E
.
Qed
.
Lemma
submseteq_app_inv_r
l1
l2
k
:
l1
++
k
⊆+
l2
++
k
→
l1
⊆+
l2
.
Proof
.
revert
l1
l2
.
induction
k
as
[|
y
k
IH
];
intros
l1
l2
.
{
by
rewrite
!
(
right_id_L
[]
(
++
))
.
}
intros
.
feed
pose
proof
(
IH
(
l1
++
[
y
])
(
l2
++
[
y
]))
as
Hl12
.
{
by
rewrite
<-!
(
assoc_L
(
++
))
.
}
rewrite
submseteq_app_l
in
Hl12
.
destruct
Hl12
as
(
k1
&
k2
&
E1
&
?
&
Hk2
)
.
rewrite
submseteq_cons_l
in
Hk2
.
destruct
Hk2
as
(
k2'
&
E2
&
?)
.
rewrite
E2
,
(
Permutation_cons_append
k2'
),
(
assoc_L
(
++
))
in
E1
.
apply
Permutation_app_inv_r
in
E1
.
rewrite
E1
.
eauto
using
submseteq_inserts_r
.
Qed
.
Proof
.
rewrite
<-!
(
comm
(
++
)
k
)
.
apply
submseteq_app_inv_l
.
Qed
.
Lemma
submseteq_cons_middle
x
l
k1
k2
:
l
⊆+
k1
++
k2
→
x
::
l
⊆+
k1
++
x
::
k2
.
Proof
.
rewrite
<-
Permutation_middle
.
by
apply
submseteq_skip
.
Qed
.
Lemma
submseteq_app_middle
l1
l2
k1
k2
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment