Skip to content
Snippets Groups Projects
Commit 4f541628 authored by Simon Friis Vindum's avatar Simon Friis Vindum
Browse files

Refactor proof of list_to_map_snoc

parent 1b9b1ef7
No related branches found
No related tags found
1 merge request!199Add lemmas about `list_to_map`
......@@ -156,7 +156,7 @@ Proof.
intros m1 m2 EQm. apply elem_of_equiv. intros i.
rewrite !elem_of_dom, EQm. done.
Qed.
Lemma dom_list_to_map {A : Type} (l : list (K * A)) :
Lemma dom_list_to_map {A} (l : list (K * A)) :
dom D (list_to_map l : M A) list_to_set l.*1.
Proof.
induction l as [|?? IH].
......@@ -204,7 +204,7 @@ Section leibniz.
( i, i X x, m !! i = Some x is_Some (f i x))
dom D (map_imap f m) = X.
Proof. unfold_leibniz; apply dom_imap. Qed.
Lemma dom_list_to_map_L {A : Type} (l : list (K * A)) :
Lemma dom_list_to_map_L {A} (l : list (K * A)) :
dom D (list_to_map l : M A) = list_to_set l.*1.
Proof. unfold_leibniz. apply dom_list_to_map. Qed.
End leibniz.
......
......@@ -836,16 +836,14 @@ Qed.
Lemma list_to_map_nil {A} : list_to_map [] = ( : M A).
Proof. done. Qed.
Lemma list_to_map_cons {A} (l : list (K * A)) i x :
list_to_map ((i, x) :: l) = <[i:=x]>(list_to_map l : M A).
list_to_map ((i, x) :: l) =@{M A} <[i:=x]>(list_to_map l).
Proof. done. Qed.
Lemma list_to_map_snoc {A} (l : list (K * A)) i x :
i l.*1 list_to_map (l ++ [(i, x)]) = <[i:=x]>(list_to_map l : M A).
i l.*1 list_to_map (l ++ [(i, x)]) =@{M A} <[i:=x]>(list_to_map l).
Proof.
induction l as [|[k y] l IH]; [done|].
intros [Hneq Hni]%not_elem_of_cons. simpl.
rewrite (IH Hni).
rewrite insert_commute; [done|].
rewrite comm; [apply Hneq|apply _].
induction l as [|[k y] l IH]; [done|]. csimpl.
intros [Hneq Hni]%not_elem_of_cons.
by rewrite (IH Hni), insert_commute by done.
Qed.
Lemma list_to_map_fmap {A B} (f : A B) l :
list_to_map (prod_map id f <$> l) = f <$> (list_to_map l : M A).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment