Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
4fc67339
Commit
4fc67339
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Plain Diff
Merge branch 'robbert/set_unfold_dom' into 'master'
Add `set_solver` support for `dom` Closes
#53
See merge request
!116
parents
268507ec
5f26f6cd
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!116
Add `set_solver` support for `dom`
Pipeline
#24537
passed
5 years ago
Stage: build
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
CHANGELOG.md
+2
-0
2 additions, 0 deletions
CHANGELOG.md
tests/fin_maps.v
+12
-1
12 additions, 1 deletion
tests/fin_maps.v
theories/fin_map_dom.v
+82
-26
82 additions, 26 deletions
theories/fin_map_dom.v
with
96 additions
and
27 deletions
CHANGELOG.md
+
2
−
0
View file @
4fc67339
...
...
@@ -13,6 +13,8 @@ API-breaking change is listed.
https://gitlab.mpi-sws.org/iris/stdpp/merge_requests/93
-
Add type class
`TopSet`
for sets with a
`⊤`
element. Provide instances for
`boolset`
,
`propset`
, and
`coPset`
.
-
Add
`set_solver`
support for
`dom`
.
## std++ 1.2.1 (released 2019-08-29)
...
...
This diff is collapsed.
Click to expand it.
tests/fin_maps.v
+
12
−
1
View file @
4fc67339
From
stdpp
Require
Import
fin_maps
.
From
stdpp
Require
Import
fin_maps
fin_map_dom
.
Section
map_disjoint
.
Context
`{
FinMap
K
M
}
.
...
...
@@ -11,3 +11,14 @@ Section map_disjoint.
m2
!!
i
=
None
→
m1
##
ₘ
{[
i
:=
x
]}
∪
m2
→
m2
##
ₘ
<
[
i
:=
x
]
>
m1
∧
m1
!!
i
=
None
.
Proof
.
intros
.
solve_map_disjoint
.
Qed
.
End
map_disjoint
.
Section
map_dom
.
Context
`{
FinMapDom
K
M
D
}
.
Lemma
set_solver_dom_subseteq
{
A
}
(
i
j
:
K
)
(
x
y
:
A
)
:
{[
i
;
j
]}
⊆
dom
D
(
<
[
i
:=
x
]
>
(
<
[
j
:=
y
]
>
(
∅
:
M
A
)))
.
Proof
.
set_solver
.
Qed
.
Lemma
set_solver_dom_disjoint
{
A
}
(
X
:
D
)
:
dom
D
(
∅
:
M
A
)
##
X
.
Proof
.
set_solver
.
Qed
.
End
map_dom
.
This diff is collapsed.
Click to expand it.
theories/fin_map_dom.v
+
82
−
26
View file @
4fc67339
...
...
@@ -142,32 +142,84 @@ Global Instance dom_proper_L `{!Equiv A, !LeibnizEquiv D} :
Proper
((
≡@
{
M
A
})
==>
(
=
))
(
dom
D
)
|
0
.
Proof
.
intros
???
.
unfold_leibniz
.
by
apply
dom_proper
.
Qed
.
Context
`{
!
LeibnizEquiv
D
}
.
Lemma
dom_map_filter_L
{
A
}
(
P
:
K
*
A
→
Prop
)
`{
!∀
x
,
Decision
(
P
x
)}
(
m
:
M
A
)
X
:
(
∀
i
,
i
∈
X
↔
∃
x
,
m
!!
i
=
Some
x
∧
P
(
i
,
x
))
→
dom
D
(
filter
P
m
)
=
X
.
Proof
.
unfold_leibniz
.
apply
dom_map_filter
.
Qed
.
Lemma
dom_empty_L
{
A
}
:
dom
D
(
@
empty
(
M
A
)
_)
=
∅.
Proof
.
unfold_leibniz
;
apply
dom_empty
.
Qed
.
Lemma
dom_empty_inv_L
{
A
}
(
m
:
M
A
)
:
dom
D
m
=
∅
→
m
=
∅.
Proof
.
by
intros
;
apply
dom_empty_inv
;
unfold_leibniz
.
Qed
.
Lemma
dom_alter_L
{
A
}
f
(
m
:
M
A
)
i
:
dom
D
(
alter
f
i
m
)
=
dom
D
m
.
Proof
.
unfold_leibniz
;
apply
dom_alter
.
Qed
.
Lemma
dom_insert_L
{
A
}
(
m
:
M
A
)
i
x
:
dom
D
(
<
[
i
:=
x
]
>
m
)
=
{[
i
]}
∪
dom
D
m
.
Proof
.
unfold_leibniz
;
apply
dom_insert
.
Qed
.
Lemma
dom_singleton_L
{
A
}
(
i
:
K
)
(
x
:
A
)
:
dom
D
({[
i
:=
x
]}
:
M
A
)
=
{[
i
]}
.
Proof
.
unfold_leibniz
;
apply
dom_singleton
.
Qed
.
Lemma
dom_delete_L
{
A
}
(
m
:
M
A
)
i
:
dom
D
(
delete
i
m
)
=
dom
D
m
∖
{[
i
]}
.
Proof
.
unfold_leibniz
;
apply
dom_delete
.
Qed
.
Lemma
dom_union_L
{
A
}
(
m1
m2
:
M
A
)
:
dom
D
(
m1
∪
m2
)
=
dom
D
m1
∪
dom
D
m2
.
Proof
.
unfold_leibniz
;
apply
dom_union
.
Qed
.
Lemma
dom_intersection_L
{
A
}
(
m1
m2
:
M
A
)
:
dom
D
(
m1
∩
m2
)
=
dom
D
m1
∩
dom
D
m2
.
Proof
.
unfold_leibniz
;
apply
dom_intersection
.
Qed
.
Lemma
dom_difference_L
{
A
}
(
m1
m2
:
M
A
)
:
dom
D
(
m1
∖
m2
)
=
dom
D
m1
∖
dom
D
m2
.
Proof
.
unfold_leibniz
;
apply
dom_difference
.
Qed
.
Lemma
dom_fmap_L
{
A
B
}
(
f
:
A
→
B
)
(
m
:
M
A
)
:
dom
D
(
f
<$>
m
)
=
dom
D
m
.
Proof
.
unfold_leibniz
;
apply
dom_fmap
.
Qed
.
Section
leibniz
.
Context
`{
!
LeibnizEquiv
D
}
.
Lemma
dom_map_filter_L
{
A
}
(
P
:
K
*
A
→
Prop
)
`{
!∀
x
,
Decision
(
P
x
)}
(
m
:
M
A
)
X
:
(
∀
i
,
i
∈
X
↔
∃
x
,
m
!!
i
=
Some
x
∧
P
(
i
,
x
))
→
dom
D
(
filter
P
m
)
=
X
.
Proof
.
unfold_leibniz
.
apply
dom_map_filter
.
Qed
.
Lemma
dom_empty_L
{
A
}
:
dom
D
(
@
empty
(
M
A
)
_)
=
∅.
Proof
.
unfold_leibniz
;
apply
dom_empty
.
Qed
.
Lemma
dom_empty_inv_L
{
A
}
(
m
:
M
A
)
:
dom
D
m
=
∅
→
m
=
∅.
Proof
.
by
intros
;
apply
dom_empty_inv
;
unfold_leibniz
.
Qed
.
Lemma
dom_alter_L
{
A
}
f
(
m
:
M
A
)
i
:
dom
D
(
alter
f
i
m
)
=
dom
D
m
.
Proof
.
unfold_leibniz
;
apply
dom_alter
.
Qed
.
Lemma
dom_insert_L
{
A
}
(
m
:
M
A
)
i
x
:
dom
D
(
<
[
i
:=
x
]
>
m
)
=
{[
i
]}
∪
dom
D
m
.
Proof
.
unfold_leibniz
;
apply
dom_insert
.
Qed
.
Lemma
dom_singleton_L
{
A
}
(
i
:
K
)
(
x
:
A
)
:
dom
D
({[
i
:=
x
]}
:
M
A
)
=
{[
i
]}
.
Proof
.
unfold_leibniz
;
apply
dom_singleton
.
Qed
.
Lemma
dom_delete_L
{
A
}
(
m
:
M
A
)
i
:
dom
D
(
delete
i
m
)
=
dom
D
m
∖
{[
i
]}
.
Proof
.
unfold_leibniz
;
apply
dom_delete
.
Qed
.
Lemma
dom_union_L
{
A
}
(
m1
m2
:
M
A
)
:
dom
D
(
m1
∪
m2
)
=
dom
D
m1
∪
dom
D
m2
.
Proof
.
unfold_leibniz
;
apply
dom_union
.
Qed
.
Lemma
dom_intersection_L
{
A
}
(
m1
m2
:
M
A
)
:
dom
D
(
m1
∩
m2
)
=
dom
D
m1
∩
dom
D
m2
.
Proof
.
unfold_leibniz
;
apply
dom_intersection
.
Qed
.
Lemma
dom_difference_L
{
A
}
(
m1
m2
:
M
A
)
:
dom
D
(
m1
∖
m2
)
=
dom
D
m1
∖
dom
D
m2
.
Proof
.
unfold_leibniz
;
apply
dom_difference
.
Qed
.
Lemma
dom_fmap_L
{
A
B
}
(
f
:
A
→
B
)
(
m
:
M
A
)
:
dom
D
(
f
<$>
m
)
=
dom
D
m
.
Proof
.
unfold_leibniz
;
apply
dom_fmap
.
Qed
.
End
leibniz
.
(** * Set solver instances *)
Global
Instance
set_unfold_dom_empty
{
A
}
i
:
SetUnfoldElemOf
i
(
dom
D
(
∅:
M
A
))
False
.
Proof
.
constructor
.
by
rewrite
dom_empty
,
elem_of_empty
.
Qed
.
Global
Instance
set_unfold_dom_alter
{
A
}
f
i
j
(
m
:
M
A
)
Q
:
SetUnfoldElemOf
i
(
dom
D
m
)
Q
→
SetUnfoldElemOf
i
(
dom
D
(
alter
f
j
m
))
Q
.
Proof
.
constructor
.
by
rewrite
dom_alter
,
(
set_unfold_elem_of
_
(
dom
_
_)
_)
.
Qed
.
Global
Instance
set_unfold_dom_insert
{
A
}
i
j
x
(
m
:
M
A
)
Q
:
SetUnfoldElemOf
i
(
dom
D
m
)
Q
→
SetUnfoldElemOf
i
(
dom
D
(
<
[
j
:=
x
]
>
m
))
(
i
=
j
∨
Q
)
.
Proof
.
constructor
.
by
rewrite
dom_insert
,
elem_of_union
,
(
set_unfold_elem_of
_
(
dom
_
_)
_),
elem_of_singleton
.
Qed
.
Global
Instance
set_unfold_dom_delete
{
A
}
i
j
(
m
:
M
A
)
Q
:
SetUnfoldElemOf
i
(
dom
D
m
)
Q
→
SetUnfoldElemOf
i
(
dom
D
(
delete
j
m
))
(
Q
∧
i
≠
j
)
.
Proof
.
constructor
.
by
rewrite
dom_delete
,
elem_of_difference
,
(
set_unfold_elem_of
_
(
dom
_
_)
_),
elem_of_singleton
.
Qed
.
Global
Instance
set_unfold_dom_singleton
{
A
}
i
j
:
SetUnfoldElemOf
i
(
dom
D
({[
j
:=
x
]}
:
M
A
))
(
i
=
j
)
.
Proof
.
constructor
.
by
rewrite
dom_singleton
,
elem_of_singleton
.
Qed
.
Global
Instance
set_unfold_dom_union
{
A
}
i
(
m1
m2
:
M
A
)
Q1
Q2
:
SetUnfoldElemOf
i
(
dom
D
m1
)
Q1
→
SetUnfoldElemOf
i
(
dom
D
m2
)
Q2
→
SetUnfoldElemOf
i
(
dom
D
(
m1
∪
m2
))
(
Q1
∨
Q2
)
.
Proof
.
constructor
.
by
rewrite
dom_union
,
elem_of_union
,
!
(
set_unfold_elem_of
_
(
dom
_
_)
_)
.
Qed
.
Global
Instance
set_unfold_dom_intersection
{
A
}
i
(
m1
m2
:
M
A
)
Q1
Q2
:
SetUnfoldElemOf
i
(
dom
D
m1
)
Q1
→
SetUnfoldElemOf
i
(
dom
D
m2
)
Q2
→
SetUnfoldElemOf
i
(
dom
D
(
m1
∩
m2
))
(
Q1
∧
Q2
)
.
Proof
.
constructor
.
by
rewrite
dom_intersection
,
elem_of_intersection
,
!
(
set_unfold_elem_of
_
(
dom
_
_)
_)
.
Qed
.
Global
Instance
set_unfold_dom_difference
{
A
}
i
(
m1
m2
:
M
A
)
Q1
Q2
:
SetUnfoldElemOf
i
(
dom
D
m1
)
Q1
→
SetUnfoldElemOf
i
(
dom
D
m2
)
Q2
→
SetUnfoldElemOf
i
(
dom
D
(
m1
∖
m2
))
(
Q1
∧
¬
Q2
)
.
Proof
.
constructor
.
by
rewrite
dom_difference
,
elem_of_difference
,
!
(
set_unfold_elem_of
_
(
dom
_
_)
_)
.
Qed
.
Global
Instance
set_unfold_dom_fmap
{
A
B
}
(
f
:
A
→
B
)
i
(
m
:
M
A
)
Q
:
SetUnfoldElemOf
i
(
dom
D
m
)
Q
→
SetUnfoldElemOf
i
(
dom
D
(
f
<$>
m
))
Q
.
Proof
.
constructor
.
by
rewrite
dom_fmap
,
(
set_unfold_elem_of
_
(
dom
_
_)
_)
.
Qed
.
End
fin_map_dom
.
Lemma
dom_seq
`{
FinMapDom
nat
M
D
}
{
A
}
start
(
xs
:
list
A
)
:
...
...
@@ -180,3 +232,7 @@ Qed.
Lemma
dom_seq_L
`{
FinMapDom
nat
M
D
,
!
LeibnizEquiv
D
}
{
A
}
start
(
xs
:
list
A
)
:
dom
D
(
map_seq
(
M
:=
M
A
)
start
xs
)
=
set_seq
start
(
length
xs
)
.
Proof
.
unfold_leibniz
.
apply
dom_seq
.
Qed
.
Instance
set_unfold_dom_seq
`{
FinMapDom
nat
M
D
}
{
A
}
start
(
xs
:
list
A
)
:
SetUnfoldElemOf
i
(
dom
D
(
map_seq
start
(
M
:=
M
A
)
xs
))
(
start
≤
i
<
start
+
length
xs
)
.
Proof
.
constructor
.
by
rewrite
dom_seq
,
elem_of_set_seq
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment