Skip to content
Snippets Groups Projects
Commit 56558ffb authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge branch 'robbert/injection_gset_dom' into 'master'

Workaround to avoid `injection` from unfolding equalities on `dom`

See merge request !367
parents b9447cc1 5bb47351
No related branches found
No related tags found
1 merge request!367Workaround to avoid `injection` from unfolding equalities on `dom`
Pipeline #62510 passed
......@@ -70,3 +70,9 @@ Failed to progress.
============================
bool_decide (∅ ⊆ {[1; 2; 3]}) = true
The command has indeed failed with message:
Nothing to inject.
The command has indeed failed with message:
Nothing to inject.
The command has indeed failed with message:
Failed to progress.
......@@ -68,3 +68,17 @@ Proof.
Show.
reflexivity.
Qed.
Lemma should_not_unfold (m1 m2 : gmap nat nat) k x :
dom (gset nat) m1 = dom (gset nat) m2
<[k:=x]> m1 = <[k:=x]> m2
True.
Proof.
(** Make sure that [injection]/[simplify_eq] does not unfold constructs on
[gmap] and [gset]. *)
intros Hdom Hinsert.
Fail injection Hdom.
Fail injection Hinsert.
Fail progress simplify_eq.
done.
Qed.
......@@ -251,7 +251,11 @@ Section gset.
Global Instance gset_elem_of_dec : RelDecision (∈@{gset K}) | 1 := _.
Global Instance gset_disjoint_dec : RelDecision (##@{gset K}) := _.
Global Instance gset_subseteq_dec : RelDecision (⊆@{gset K}) := _.
Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := mapset_dom.
(** We put in an eta expansion to avoid [injection] from unfolding equalities
like [dom (gset _) m1 = dom (gset _) m2]. *)
Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := λ m,
let '(GMap m Hm) := m in mapset_dom (GMap m Hm).
Global Arguments gset_elem_of : simpl never.
Global Arguments gset_empty : simpl never.
......@@ -273,7 +277,11 @@ Section gset.
Global Instance gset_semi_set : SemiSet K (gset K) | 1 := _.
Global Instance gset_set : Set_ K (gset K) | 1 := _.
Global Instance gset_fin_set : FinSet K (gset K) := _.
Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K) := mapset_dom_spec.
Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K).
Proof.
pose proof (mapset_dom_spec (M:=gmap K)) as [?? Hdom]; split; auto.
intros A m. specialize (Hdom A m). by destruct m.
Qed.
(** If you are looking for a lemma showing that [gset] is extensional, see
[sets.set_eq]. *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment