Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
592f728f
Commit
592f728f
authored
1 year ago
by
Ralf Jung
Browse files
Options
Downloads
Plain Diff
Merge branch 'ralf/filter_dom' into 'master'
add filter_dom (from Perennial) See merge request
iris/stdpp!482
parents
3b4649a7
3baf30f9
No related branches found
No related tags found
1 merge request
!482
add filter_dom (from Perennial)
Pipeline
#83540
passed
1 year ago
Stage: build
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
stdpp/fin_map_dom.v
+12
-0
12 additions, 0 deletions
stdpp/fin_map_dom.v
with
12 additions
and
0 deletions
stdpp/fin_map_dom.v
+
12
−
0
View file @
592f728f
...
...
@@ -70,6 +70,14 @@ Lemma dom_filter_subseteq {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m
dom
(
filter
P
m
)
⊆
dom
m
.
Proof
.
apply
subseteq_dom
,
map_filter_subseteq
.
Qed
.
Lemma
filter_dom
{
A
}
`{
!
Elements
K
D
,
!
FinSet
K
D
}
(
P
:
K
→
Prop
)
`{
!∀
x
,
Decision
(
P
x
)}
(
m
:
M
A
)
:
filter
P
(
dom
m
)
≡
dom
(
filter
(
λ
kv
,
P
kv
.
1
)
m
)
.
Proof
.
intros
i
.
rewrite
elem_of_filter
,
!
elem_of_dom
.
unfold
is_Some
.
setoid_rewrite
map_filter_lookup_Some
.
naive_solver
.
Qed
.
Lemma
dom_empty
{
A
}
:
dom
(
@
empty
(
M
A
)
_)
≡
∅.
Proof
.
intros
x
.
rewrite
elem_of_dom
,
lookup_empty
,
<-
not_eq_None_Some
.
set_solver
.
...
...
@@ -283,6 +291,10 @@ Section leibniz.
(
∀
i
,
i
∈
X
↔
∃
x
,
m
!!
i
=
Some
x
∧
P
(
i
,
x
))
→
dom
(
filter
P
m
)
=
X
.
Proof
.
unfold_leibniz
.
apply
dom_filter
.
Qed
.
Lemma
filter_dom_L
{
A
}
`{
!
Elements
K
D
,
!
FinSet
K
D
}
(
P
:
K
→
Prop
)
`{
!∀
x
,
Decision
(
P
x
)}
(
m
:
M
A
)
:
filter
P
(
dom
m
)
=
dom
(
filter
(
λ
kv
,
P
kv
.
1
)
m
)
.
Proof
.
unfold_leibniz
.
apply
filter_dom
.
Qed
.
Lemma
dom_empty_L
{
A
}
:
dom
(
@
empty
(
M
A
)
_)
=
∅.
Proof
.
unfold_leibniz
;
apply
dom_empty
.
Qed
.
Lemma
dom_empty_iff_L
{
A
}
(
m
:
M
A
)
:
dom
m
=
∅
↔
m
=
∅.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment