-
- Downloads
There was a problem fetching the pipeline summary.
`Equivalence` for `≡` on gmultisets.
parent
0d9f04c5
No related branches found
No related tags found
Pipeline #
... | ... | @@ -45,7 +45,7 @@ Section definitions. |
Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X, | ||
let (X) := X in dom _ X. | ||
End definitions. | ||
End definitions. | ||
|
||
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq. | ||
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty. | ||
... | ... | @@ -66,6 +66,8 @@ Proof. |
Qed. | ||
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A). | ||
Proof. intros X Y. by rewrite gmultiset_eq. Qed. | ||
Global Instance gmultiset_equivalence : Equivalence (≡@{gmultiset A}). | ||
Proof. constructor; repeat intro; naive_solver. Qed. | ||
(* Multiplicity *) | ||
Lemma multiplicity_empty x : multiplicity x ∅ = 0. | ||
... | ... |