Skip to content
Snippets Groups Projects
Commit 7f96ed53 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Change the definition of "is_Some" to use an existential.

parent 8d0d1ffc
No related branches found
No related tags found
No related merge requests found
......@@ -70,7 +70,7 @@ Lemma elem_of_or_empty X : (∃ x, x ∈ X) ∨ X ≡ ∅.
Proof. destruct (choose X) eqn:?; eauto using choose_Some, choose_None. Qed.
Lemma choose_is_Some X : X is_Some (choose X).
Proof.
rewrite is_Some_alt. destruct (choose X) eqn:?.
destruct (choose X) eqn:?.
* rewrite elem_of_equiv_empty. split; eauto using choose_Some.
* split. intros []; eauto using choose_None. by intros [??].
Qed.
......
......@@ -33,7 +33,7 @@ Proof.
{ by apply subseteq_dom. }
intros Hdom. destruct Hss2. intros i x Hi.
specialize (Hdom i). rewrite !elem_of_dom in Hdom.
feed inversion Hdom. eauto. by erewrite (Hss1 i) in Hi by eauto.
destruct Hdom; eauto. erewrite (Hss1 i) in Hi by eauto. congruence.
Qed.
Lemma dom_empty {A} : dom D (@empty (M A) _) ∅.
......@@ -50,9 +50,8 @@ Qed.
Lemma dom_insert {A} (m : M A) i x : dom D (<[i:=x]>m) {[ i ]} dom D m.
Proof.
apply elem_of_equiv. intros j.
rewrite elem_of_union, !elem_of_dom, !is_Some_alt.
setoid_rewrite lookup_insert_Some.
apply elem_of_equiv. intros j. rewrite elem_of_union, !elem_of_dom.
unfold is_Some. setoid_rewrite lookup_insert_Some.
destruct (decide (i = j)); esolve_elem_of.
Qed.
Lemma dom_insert_subseteq {A} (m : M A) i x : dom D m dom D (<[i:=x]>m).
......@@ -69,14 +68,12 @@ Qed.
Lemma dom_delete {A} (m : M A) i : dom D (delete i m) dom D m {[ i ]}.
Proof.
apply elem_of_equiv. intros j.
rewrite elem_of_difference, !elem_of_dom, !is_Some_alt.
setoid_rewrite lookup_delete_Some. esolve_elem_of.
apply elem_of_equiv. intros j. rewrite elem_of_difference, !elem_of_dom.
unfold is_Some. setoid_rewrite lookup_delete_Some. esolve_elem_of.
Qed.
Lemma delete_partial_alter_dom {A} (m : M A) i f :
i dom D m delete i (partial_alter f i m) = m.
Proof. rewrite not_elem_of_dom. apply delete_partial_alter. Qed.
Lemma delete_insert_dom {A} (m : M A) i x :
i dom D m delete i (<[i:=x]>m) = m.
Proof. rewrite not_elem_of_dom. apply delete_insert. Qed.
......@@ -85,7 +82,7 @@ Lemma map_disjoint_dom {A} (m1 m2 : M A) : m1 ⊥ m2 ↔ dom D m1 ∩ dom D m2
Proof.
unfold disjoint, map_disjoint, map_intersection_forall.
rewrite elem_of_equiv_empty. setoid_rewrite elem_of_intersection.
setoid_rewrite elem_of_dom. setoid_rewrite is_Some_alt. naive_solver.
setoid_rewrite elem_of_dom. unfold is_Some. naive_solver.
Qed.
Lemma map_disjoint_dom_1 {A} (m1 m2 : M A) : m1 m2 dom D m1 dom D m2 ∅.
Proof. apply map_disjoint_dom. Qed.
......@@ -94,24 +91,22 @@ Proof. apply map_disjoint_dom. Qed.
Lemma dom_union {A} (m1 m2 : M A) : dom D (m1 m2) dom D m1 dom D m2.
Proof.
apply elem_of_equiv. intros i.
rewrite elem_of_union, !elem_of_dom, !is_Some_alt.
setoid_rewrite lookup_union_Some_raw. destruct (m1 !! i); naive_solver.
apply elem_of_equiv. intros i. rewrite elem_of_union, !elem_of_dom.
unfold is_Some. setoid_rewrite lookup_union_Some_raw.
destruct (m1 !! i); naive_solver.
Qed.
Lemma dom_intersection {A} (m1 m2 : M A) :
dom D (m1 m2) dom D m1 dom D m2.
Proof.
apply elem_of_equiv. intros i.
rewrite elem_of_intersection, !elem_of_dom, !is_Some_alt.
setoid_rewrite lookup_intersection_Some.
setoid_rewrite is_Some_alt. naive_solver.
apply elem_of_equiv. intros i. rewrite elem_of_intersection, !elem_of_dom.
unfold is_Some. setoid_rewrite lookup_intersection_Some. naive_solver.
Qed.
Lemma dom_difference {A} (m1 m2 : M A) : dom D (m1 m2) dom D m1 dom D m2.
Proof.
apply elem_of_equiv. intros i.
rewrite elem_of_difference, !elem_of_dom, !is_Some_alt.
setoid_rewrite lookup_difference_Some. destruct (m2 !! i); naive_solver.
apply elem_of_equiv. intros i. rewrite elem_of_difference, !elem_of_dom.
unfold is_Some. setoid_rewrite lookup_difference_Some.
destruct (m2 !! i); naive_solver.
Qed.
End fin_map_dom.
......@@ -427,7 +427,7 @@ Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
i fst <$> l map_of_list l !! i = None.
Proof.
rewrite elem_of_list_fmap, eq_None_not_Some, is_Some_alt.
rewrite elem_of_list_fmap, eq_None_not_Some.
intros Hi [x ?]. destruct Hi. exists (i,x). simpl.
auto using elem_of_map_of_list_2.
Qed.
......@@ -749,7 +749,7 @@ Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
m1 m2 m1 !! i = Some x m2 !! i = None.
Proof.
intros Hdisjoint ?. rewrite eq_None_not_Some, is_Some_alt.
intros Hdisjoint ?. rewrite eq_None_not_Some.
intros [x2 ?]. by apply (Hdisjoint i x x2).
Qed.
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
......@@ -1110,10 +1110,8 @@ Qed.
Lemma lookup_intersection_Some {A} (m1 m2 : M A) i x :
(m1 m2) !! i = Some x m1 !! i = Some x is_Some (m2 !! i).
Proof.
unfold intersection, map_intersection,
intersection_with, map_intersection_with.
rewrite (lookup_merge _).
rewrite is_Some_alt.
unfold intersection, map_intersection, intersection_with,
map_intersection_with. rewrite (lookup_merge _).
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
......
......@@ -373,45 +373,43 @@ Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_length l i : is_Some (l !! i) i < length l.
Proof.
revert i. induction l.
* split; by inversion 1.
* intros [|?]; simpl.
+ split; eauto with arith.
+ by rewrite <-NPeano.Nat.succ_lt_mono.
Qed.
Lemma lookup_lt_length_1 l i : is_Some (l !! i) i < length l.
Proof. apply lookup_lt_length. Qed.
Lemma lookup_lt_length_alt l i x : l !! i = Some x i < length l.
Proof. intros Hl. by rewrite <-lookup_lt_length, Hl. Qed.
Lemma lookup_lt_length_2 l i : i < length l is_Some (l !! i).
Proof. apply lookup_lt_length. Qed.
Lemma lookup_ge_length l i : l !! i = None length l i.
Proof. rewrite eq_None_not_Some, lookup_lt_length. lia. Qed.
Lemma lookup_ge_length_1 l i : l !! i = None length l i.
Proof. by rewrite lookup_ge_length. Qed.
Lemma lookup_ge_length_2 l i : length l i l !! i = None.
Proof. by rewrite lookup_ge_length. Qed.
Lemma list_eq_length_eq l1 l2 :
Lemma lookup_lt_Some l i x : l !! i = Some x i < length l.
Proof.
revert i. induction l; intros [|?] ?;
simpl in *; simplify_equality; simpl; auto with arith.
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l is_Some (l !! i).
Proof.
revert i. induction l; intros [|?] ?;
simpl in *; simplify_equality; simpl; eauto with lia.
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i) i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None length l i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None length l i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l i l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_length l1 l2 :
length l2 = length l1
( i x y, l1 !! i = Some x l2 !! i = Some y x = y) l1 = l2.
Proof.
intros Hlength Hlookup. apply list_eq. intros i.
destruct (l2 !! i) as [x|] eqn:E.
* feed inversion (lookup_lt_length_2 l1 i) as [y]; [|eauto with f_equal].
pose proof (lookup_lt_length_alt l2 i x E). lia.
* rewrite lookup_ge_length in E |- *. lia.
intros Hl ?. apply list_eq. intros i. destruct (l2 !! i) as [x|] eqn:Hx.
* destruct (lookup_lt_is_Some_2 l1 i) as [y ?]; subst.
+ rewrite <-Hl. eauto using lookup_lt_Some.
+ naive_solver.
* by rewrite lookup_ge_None, <-Hl, <-lookup_ge_None.
Qed.
Lemma lookup_app_l l1 l2 i :
i < length l1 (l1 ++ l2) !! i = l1 !! i.
Lemma lookup_app_l l1 l2 i : i < length l1 (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some l1 l2 i x :
l1 !! i = Some x (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_length_alt. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
Proof.
revert i. induction l1; intros [|i]; simpl in *; simplify_equality; auto.
......@@ -451,7 +449,7 @@ Qed.
Lemma list_lookup_insert l i x : i < length l <[i:=x]>l !! i = Some x.
Proof.
intros Hi. unfold insert, list_insert. rewrite list_lookup_alter.
by feed inversion (lookup_lt_length_2 l i).
by destruct (lookup_lt_is_Some_2 l i); simplify_option_equality.
Qed.
Lemma list_lookup_insert_ne l i j x : i j <[i:=x]>l !! j = l !! j.
Proof. apply list_lookup_alter_ne. Qed.
......@@ -1597,7 +1595,7 @@ Section contains_dec.
Lemma list_remove_list_contains l1 l2 :
l1 `contains` l2 is_Some (list_remove_list l1 l2).
Proof.
rewrite is_Some_alt. split.
split.
* revert l2. induction l1 as [|x l1 IH]; simpl.
{ intros l2 _. by exists l2. }
intros l2. rewrite contains_cons_l. intros (k&Hk&?).
......@@ -1646,10 +1644,7 @@ Section same_length.
Lemma same_length_lookup l k i :
l `same_length` k is_Some (l !! i) is_Some (k !! i).
Proof.
rewrite same_length_length. setoid_rewrite lookup_lt_length.
intros E. by rewrite E.
Qed.
Proof. rewrite same_length_length. rewrite !lookup_lt_is_Some. lia. Qed.
Lemma same_length_take l k n :
l `same_length` k take n l `same_length` take n k.
......
......@@ -27,10 +27,9 @@ Instance mapset_elems: Elements K (mapset M) := λ X,
Lemma mapset_eq (X1 X2 : mapset M) : X1 = X2 x, x X1 x X2.
Proof.
split.
* intros. by subst.
* destruct X1 as [m1], X2 as [m2]. simpl. intros E.
f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E.
split; [by intros; subst |].
destruct X1 as [m1], X2 as [m2]. simpl. intros E.
f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E.
Qed.
Global Instance mapset_eq_dec `{ m1 m2 : M unit, Decision (m1 = m2)}
......@@ -56,7 +55,7 @@ Proof.
* unfold intersection, elem_of, mapset_intersection, mapset_elem_of.
intros [m1] [m2] ?. simpl. rewrite lookup_intersection_Some.
setoid_replace (is_Some (m2 !! x)) with (m2 !! x = Some ()); [done |].
rewrite is_Some_alt. split; eauto. by intros [[] ?].
split; eauto. by intros [[] ?].
* unfold difference, elem_of, mapset_difference, mapset_elem_of.
intros [m1] [m2] ?. simpl. rewrite lookup_difference_Some.
destruct (m2 !! x) as [[]|]; intuition congruence.
......@@ -113,7 +112,7 @@ Instance mapset_dom {A} : Dom (M A) (mapset M) := mapset_dom_with (λ _, true).
Instance mapset_dom_spec: FinMapDom K M (mapset M).
Proof.
split; try apply _. intros. unfold dom, mapset_dom.
rewrite is_Some_alt, elem_of_mapset_dom_with. naive_solver.
rewrite elem_of_mapset_dom_with. unfold is_Some. naive_solver.
Qed.
End mapset.
......
......@@ -17,11 +17,10 @@ Proof. by destruct l. Qed.
Lemma natmap_wf_lookup {A} (l : natmap_raw A) :
natmap_wf l l [] i x, mjoin (l !! i) = Some x.
Proof.
intros Hwf Hl. induction l as [|[x|] l IH]; simpl.
* done.
intros Hwf Hl. induction l as [|[x|] l IH]; simpl; [done| |].
* exists 0. simpl. eauto.
* destruct IH as (i&x&?); eauto using natmap_wf_inv.
{ intro. subst. inversion Hwf. }
{ intro. subst. by destruct Hwf. }
by exists (S i) x.
Qed.
......@@ -221,8 +220,7 @@ Proof.
+ by specialize (E 0).
+ destruct (natmap_wf_lookup (None :: l1)) as [i [??]]; auto with congruence.
+ by specialize (E 0).
+ f_equal. apply IH; eauto using natmap_wf_inv.
intros i. apply (E (S i)).
+ f_equal. apply IH; eauto using natmap_wf_inv. intros i. apply (E (S i)).
* done.
* intros ?? [??] ?. apply natmap_lookup_alter_raw.
* intros ?? [??] ??. apply natmap_lookup_alter_raw_ne.
......
......@@ -26,70 +26,48 @@ Definition from_option {A} (a : A) (x : option A) : A :=
(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
Lemma option_eq {A} (x y : option A) :
x = y a, x = Some a y = Some a.
Proof.
split; [by intros; by subst |]. intros E. destruct x, y.
+ by apply E.
+ symmetry. by apply E.
+ by apply E.
+ done.
Qed.
Lemma option_eq {A} (x y : option A) : x = y a, x = Some a y = Some a.
Proof. split; [by intros; by subst |]. destruct x, y; naive_solver. Qed.
Inductive is_Some {A} : option A Prop :=
mk_is_Some x : is_Some (Some x).
Definition is_Some {A} (x : option A) := y, x = Some y.
Lemma mk_is_Some {A} (x : option A) y : x = Some y is_Some x.
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.
Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x).
Proof.
intros [?] p2. by refine
match p2 in is_Some o return
match o with Some y => (mk_is_Some y =) | _ => λ _, False end p2
with mk_is_Some y => _ end.
set (P (y : option A) := match y with Some _ => True | _ => False end).
set (f x := match x return P x is_Some x with
Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
set (g x (H : is_Some x) :=
match H return P x with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end).
assert ( x H, f x (g x H) = H) as f_g by (by intros ? [??]; subst).
intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct x, p1.
Qed.
Lemma mk_is_Some_alt `(x : option A) a : x = Some a is_Some x.
Proof. intros. by subst. Qed.
Hint Resolve mk_is_Some_alt.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by inversion 1. Qed.
Hint Resolve is_Some_None.
Lemma is_Some_alt `(x : option A) : is_Some x y, x = Some y.
Proof. split. inversion 1; eauto. intros [??]. by subst. Qed.
Ltac inv_is_Some := repeat
match goal with H : is_Some _ |- _ => inversion H; clear H; subst end.
Definition is_Some_proj `{x : option A} : is_Some x A :=
Instance is_Some_dec {A} (x : option A) : Decision (is_Some x) :=
match x with
| Some a => λ _, a
| None => False_rect _ is_Some_None
| Some x => left (ex_intro _ x eq_refl)
| None => right is_Some_None
end.
Definition Some_dec `(x : option A) : { a | x = Some a } + { x = None } :=
Definition is_Some_proj {A} {x : option A} : is_Some x A :=
match x with Some a => λ _, a | None => False_rect _ is_Some_None end.
Definition Some_dec {A} (x : option A) : { a | x = Some a } + { x = None } :=
match x return { a | x = Some a } + { x = None } with
| Some a => inleft (a eq_refl _)
| None => inright eq_refl
end.
Instance is_Some_dec `(x : option A) : Decision (is_Some x) :=
match x with
| Some x => left (mk_is_Some x)
| None => right is_Some_None
end.
Instance None_dec `(x : option A) : Decision (x = None) :=
match x with
| Some x => right (Some_ne_None x)
| None => left eq_refl
end.
Instance None_dec {A} (x : option A) : Decision (x = None) :=
match x with Some x => right (Some_ne_None x) | None => left eq_refl end.
Lemma eq_None_not_Some `(x : option A) : x = None ¬is_Some x.
Proof. split. by destruct 2. destruct x. by intros []. done. Qed.
Lemma eq_None_not_Some {A} (x : option A) : x = None ¬is_Some x.
Proof. destruct x; unfold is_Some; naive_solver. Qed.
Lemma not_eq_None_Some `(x : option A) : x None is_Some x.
Proof. rewrite eq_None_not_Some. split. apply dec_stable. tauto. Qed.
Lemma mk_eq_Some {A} (x : option A) a :
is_Some x ( b, x = Some b b = a) x = Some a.
Proof. destruct 1. intros. f_equal. auto. Qed.
(** Equality on [option] is decidable. *)
Instance option_eq_dec `{dec : x y : A, Decision (x = y)}
(x y : option A) : Decision (x = y) :=
......@@ -122,20 +100,18 @@ Definition mapM `{!MBind M} `{!MRet M} {A B}
| x :: l => y f x; k go l; mret (y :: k)
end.
Lemma fmap_is_Some {A B} (f : A B) (x : option A) :
is_Some (f <$> x) is_Some x.
Proof. split; inversion 1. by destruct x. done. Qed.
Lemma fmap_Some {A B} (f : A B) (x : option A) y :
Lemma fmap_is_Some {A B} (f : A B) x : is_Some (f <$> x) is_Some x.
Proof. unfold is_Some; destruct x; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A B) x y :
f <$> x = Some y x', x = Some x' y = f x'.
Proof. unfold fmap, option_fmap. destruct x; naive_solver. Qed.
Lemma fmap_None {A B} (f : A B) (x : option A) :
f <$> x = None x = None.
Proof. unfold fmap, option_fmap. by destruct x. Qed.
Proof. destruct x; naive_solver. Qed.
Lemma fmap_None {A B} (f : A B) x : f <$> x = None x = None.
Proof. by destruct x. Qed.
Lemma option_fmap_id {A} (x : option A) : id <$> x = x.
Proof. by destruct x. Qed.
Lemma option_bind_assoc {A B C} (f : A option B)
(g : B option C) (x : option A) : (x ≫= f) ≫= g = x ≫= (mbind g f).
(g : B option C) (x : option A) : (x ≫= f) ≫= g = x ≫= (mbind g f).
Proof. by destruct x; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A option B) x y :
( a, f a = g a) x = y x ≫= f = y ≫= g.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment