Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
88e16c68
Commit
88e16c68
authored
6 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
do not override notation
parent
ac3cee05
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!49
silence fewer warnings, add comment about overwriting notation
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
_CoqProject
+0
-1
0 additions, 1 deletion
_CoqProject
theories/numbers.v
+11
-15
11 additions, 15 deletions
theories/numbers.v
with
11 additions
and
16 deletions
_CoqProject
+
0
−
1
View file @
88e16c68
-Q theories stdpp
-arg -w -arg -notation-overridden
theories/base.v
theories/tactics.v
theories/option.v
...
...
This diff is collapsed.
Click to expand it.
theories/numbers.v
+
11
−
15
View file @
88e16c68
...
...
@@ -380,10 +380,6 @@ Notation "1" := (Q2Qc 1) : Qc_scope.
Notation
"2"
:=
(
1
+
1
)
:
Qc_scope
.
Notation
"- 1"
:=
(
Qcopp
1
)
:
Qc_scope
.
Notation
"- 2"
:=
(
Qcopp
2
)
:
Qc_scope
.
(* The following two already exist in Coq's stdlib, but we overwrite them with a
different definition. *)
Notation
"x - y"
:=
(
x
+
-
y
)
:
Qc_scope
.
Notation
"x / y"
:=
(
x
*
/
y
)
:
Qc_scope
.
Infix
"≤"
:=
Qcle
:
Qc_scope
.
Notation
"x ≤ y ≤ z"
:=
(
x
≤
y
∧
y
≤
z
)
:
Qc_scope
.
Notation
"x ≤ y < z"
:=
(
x
≤
y
∧
y
<
z
)
:
Qc_scope
.
...
...
@@ -555,7 +551,7 @@ Next Obligation. intros x y. apply Qcmult_pos_pos; apply Qp_prf. Qed.
Program
Definition
Qp_div
(
x
:
Qp
)
(
y
:
positive
)
:
Qp
:=
mk_Qp
(
x
/
Zpos
y
)
_
.
Next
Obligation
.
intros
x
y
.
assert
(
0
<
Zpos
y
)
%
Qc
.
intros
x
y
.
unfold
Qcdiv
.
assert
(
0
<
Zpos
y
)
%
Qc
.
{
apply
(
Z2Qc_inj_lt
0
%
Z
(
Zpos
y
)),
Pos2Z
.
is_pos
.
}
by
rewrite
(
Qcmult_lt_mono_pos_r
_
_
(
Zpos
y
)
%
Z
),
Qcmult_0_l
,
<-
Qcmult_assoc
,
Qcmult_inv_l
,
Qcmult_1_r
.
...
...
@@ -592,10 +588,10 @@ Instance Qp_plus_inj_l p : Inj (=) (=) (λ q, q + p)%Qp.
Proof
.
intros
q1
q2
.
rewrite
!
Qp_eq
;
simpl
.
apply
(
inj
(
λ
q
,
q
+
p
)
%
Qc
)
.
Qed
.
Lemma
Qp_minus_diag
x
:
(
x
-
x
)
%
Qp
=
None
.
Proof
.
unfold
Qp_minus
.
by
rewrite
Qcplus_opp_r
.
Qed
.
Proof
.
unfold
Qp_minus
,
Qcminus
.
by
rewrite
Qcplus_opp_r
.
Qed
.
Lemma
Qp_op_minus
x
y
:
((
x
+
y
)
-
x
)
%
Qp
=
Some
y
.
Proof
.
unfold
Qp_minus
;
simpl
.
unfold
Qp_minus
,
Qcminus
;
simpl
.
rewrite
(
Qcplus_comm
x
),
<-
Qcplus_assoc
,
Qcplus_opp_r
,
Qcplus_0_r
.
destruct
(
decide
_)
as
[|[]];
auto
.
by
f_equal
;
apply
Qp_eq
.
Qed
.
...
...
@@ -620,7 +616,7 @@ Proof.
Qed
.
Lemma
Qp_div_S
x
y
:
(
x
/
(
2
*
y
)
+
x
/
(
2
*
y
)
=
x
/
y
)
%
Qp
.
Proof
.
apply
Qp_eq
;
simpl
.
apply
Qp_eq
;
simpl
.
unfold
Qcdiv
.
rewrite
<-
Qcmult_plus_distr_l
,
Pos2Z
.
inj_mul
,
Z2Qc_inj_mul
,
Z2Qc_inj_2
.
rewrite
Qcplus_diag
.
by
field_simplify
.
Qed
.
...
...
@@ -639,7 +635,7 @@ Lemma Qp_lt_sum (x y : Qp) : (x < y)%Qc ↔ ∃ z, y = (x + z)%Qp.
Proof
.
split
.
-
intros
Hlt
%
Qclt_minus_iff
.
exists
(
mk_Qp
(
y
-
x
)
Hlt
)
.
apply
Qp_eq
;
simpl
.
by
rewrite
(
Qcplus_comm
y
),
Qcplus_assoc
,
Qcplus_opp_r
,
Qcplus_0_l
.
unfold
Qcminus
.
by
rewrite
(
Qcplus_comm
y
),
Qcplus_assoc
,
Qcplus_opp_r
,
Qcplus_0_l
.
-
intros
[
z
->
];
simpl
.
rewrite
<-
(
Qcplus_0_r
x
)
at
1
.
apply
Qcplus_lt_mono_l
,
Qp_prf
.
Qed
.
...
...
@@ -652,12 +648,12 @@ Proof.
destruct
(
Qc_le_dec
q1
q2
)
as
[
LE
|
LE
%
Qclt_nge
%
Qclt_le_weak
];
[
by
eauto
|]
.
destruct
(
help
q2
q1
)
as
(
q
&
q1'
&
q2'
&
?
&
?);
eauto
.
}
intros
q1
q2
Hq
.
exists
(
q1
/
2
)
%
Qp
,
(
q1
/
2
)
%
Qp
.
assert
(
0
<
q2
-
q1
/
2
)
%
Qc
as
Hq2'
.
assert
(
0
<
q2
+
-
q1
*
/
2
)
%
Qc
as
Hq2'
.
{
eapply
Qclt_le_trans
;
[|
by
apply
Qcplus_le_mono_r
,
Hq
]
.
replace
(
q1
-
q1
/
2
)
%
Qc
with
(
q1
*
(
1
-
1
/
2
))
%
Qc
by
ring
.
replace
0
%
Qc
with
(
0
*
(
1-1
/
2
))
%
Qc
by
ring
.
by
apply
Qcmult_lt_compat_r
.
}
exists
(
mk_Qp
(
q2
-
q1
/
2
%
Z
)
Hq2'
)
.
split
;
[
by
rewrite
Qp_div_2
|]
.
apply
Qp_eq
;
simpl
.
ring
.
replace
(
q1
+
-
q1
*
/
2
)
%
Qc
with
(
q1
*
(
1
+
-
1
*
/
2
))
%
Qc
by
ring
.
replace
0
%
Qc
with
(
0
*
(
1
+
-
1
*
/
2
))
%
Qc
by
ring
.
by
apply
Qcmult_lt_compat_r
.
}
exists
(
mk_Qp
(
q2
+
-
q1
*
/
2
%
Z
)
Hq2'
)
.
split
;
[
by
rewrite
Qp_div_2
|]
.
apply
Qp_eq
;
simpl
.
unfold
Qcdiv
.
ring
.
Qed
.
Lemma
Qp_cross_split
p
a
b
c
d
:
...
...
@@ -683,7 +679,7 @@ Qed.
Lemma
Qp_bounded_split
(
p
r
:
Qp
)
:
∃
q1
q2
:
Qp
,
(
q1
≤
r
)
%
Qc
∧
p
=
(
q1
+
q2
)
%
Qp
.
Proof
.
destruct
(
Qclt_le_dec
r
p
)
as
[?|?]
.
-
assert
(
0
<
p
-
r
)
%
Qc
as
Hpos
.
-
assert
(
0
<
p
+
-
r
)
%
Qc
as
Hpos
.
{
apply
(
Qcplus_lt_mono_r
_
_
r
)
.
rewrite
<-
Qcplus_assoc
,
(
Qcplus_comm
(
-
r
))
.
by
rewrite
Qcplus_opp_r
,
Qcplus_0_l
,
Qcplus_0_r
.
}
exists
r
,
(
mk_Qp
_
Hpos
);
simpl
;
split
;
[
done
|]
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment