Skip to content
Snippets Groups Projects

Add notation `wn` of weakly normalizing terms; and prove some common theorems about it.

Merged Robbert Krebbers requested to merge robbert/wn into master
All threads resolved!
Files
2
+ 21
3
@@ -57,7 +57,9 @@ End definitions.
(** The reflexive transitive symmetric closure. *)
Definition rtsc {A} (R : relation A) := rtc (sc R).
(** Strongly normalizing elements. *)
(** Weakly and strongly normalizing elements. *)
Definition wn {A} (R : relation A) (x : A) := y, rtc R x y nf R y.
Notation sn R := (Acc (flip R)).
(** The various kinds of "confluence" properties. Any relation that has the
@@ -271,8 +273,19 @@ Section properties.
Hint Constructors rtc nsteps bsteps tc : core.
Lemma acc_not_ex_loop x : Acc (flip R) x ¬ex_loop R x.
Proof. unfold not. induction 1; destruct 1; eauto. Qed.
Lemma nf_wf x : nf R x wn R x.
Proof. intros. exists x; eauto. Qed.
Lemma wn_step x y : wn R y R x y wn R x.
Proof. intros (z & ? & ?) ?. exists z; eauto. Qed.
Lemma wn_step_rtc x y : wn R y rtc R x y wn R x.
Proof. induction 2; eauto using wn_step. Qed.
Lemma sn_wn `{!∀ y, Decision (red R y)} x : sn R x wn R x.
Proof.
induction 1 as [x _ IH]. destruct (decide (red R x)) as [[x' ?]|?].
- destruct (IH x') as (y&?&?); eauto using wn_step.
- by apply nf_wf.
Qed.
Lemma all_loop_red x : all_loop R x red R x.
Proof. destruct 1; auto. Qed.
@@ -288,6 +301,11 @@ Section properties.
cofix FIX. constructor; eauto using rtc_r.
Qed.
Lemma wn_not_all_loop x : wn R x ¬all_loop R x.
Proof. intros (z&?&?). rewrite all_loop_alt. eauto. Qed.
Lemma sn_not_ex_loop x : sn R x ¬ex_loop R x.
Proof. unfold not. induction 1; destruct 1; eauto. Qed.
(** An alternative definition of confluence; also known as the Church-Rosser
property. *)
Lemma confluent_alt :
Loading