Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Merge requests
!213
add set_map_union, set_map_singleton
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
add set_map_union, set_map_singleton
ralf/set_map
into
master
Overview
5
Commits
4
Pipelines
0
Changes
3
All threads resolved!
Show all comments
Merged
Ralf Jung
requested to merge
ralf/set_map
into
master
4 years ago
Overview
5
Commits
4
Pipelines
0
Changes
3
All threads resolved!
Show all comments
Expand
0
0
Merge request reports
Compare
master
version 2
5e5b2d17
4 years ago
version 1
2ddf6023
4 years ago
master (base)
and
version 2
latest version
c4b14c58
4 commits,
4 years ago
version 2
5e5b2d17
3 commits,
4 years ago
version 1
2ddf6023
1 commit,
4 years ago
3 files
+
27
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
3
Search (e.g. *.vue) (Ctrl+P)
theories/fin_sets.v
+
19
−
0
Options
@@ -342,6 +342,25 @@ Section map.
Lemma
elem_of_map_2_alt
(
f
:
A
→
B
)
(
X
:
C
)
(
x
:
A
)
(
y
:
B
)
:
x
∈
X
→
y
=
f
x
→
y
∈
set_map
(
D
:=
D
)
f
X
.
Proof
.
set_solver
.
Qed
.
Lemma
set_map_empty
(
f
:
A
→
B
)
:
set_map
(
C
:=
C
)
(
D
:=
D
)
f
∅
=
∅.
Proof
.
unfold
set_map
.
rewrite
elements_empty
.
done
.
Qed
.
Lemma
set_map_union
(
f
:
A
→
B
)
(
X
Y
:
C
)
:
set_map
(
D
:=
D
)
f
(
X
∪
Y
)
≡
set_map
(
D
:=
D
)
f
X
∪
set_map
(
D
:=
D
)
f
Y
.
Proof
.
set_solver
.
Qed
.
(** This cannot be using [=] because list_to_set_singleton does not hold for [=]. *)
Lemma
set_map_singleton
(
f
:
A
→
B
)
(
x
:
A
)
:
set_map
(
C
:=
C
)
(
D
:=
D
)
f
{[
x
]}
≡
{[
f
x
]}
.
Proof
.
set_solver
.
Qed
.
Lemma
set_map_union_L
`{
!
LeibnizEquiv
D
}
(
f
:
A
→
B
)
(
X
Y
:
C
)
:
set_map
(
D
:=
D
)
f
(
X
∪
Y
)
=
set_map
(
D
:=
D
)
f
X
∪
set_map
(
D
:=
D
)
f
Y
.
Proof
.
unfold_leibniz
.
apply
set_map_union
.
Qed
.
Lemma
set_map_singleton_L
`{
!
LeibnizEquiv
D
}
(
f
:
A
→
B
)
(
x
:
A
)
:
set_map
(
C
:=
C
)
(
D
:=
D
)
f
{[
x
]}
=
{[
f
x
]}
.
Proof
.
unfold_leibniz
.
apply
set_map_singleton
.
Qed
.
End
map
.
(** * Decision procedures *)
Loading