Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Merge requests
!36
add lemma about chained difference
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
add lemma about chained difference
ralf/difference_union
into
master
Overview
4
Commits
1
Pipelines
0
Changes
1
Merged
Ralf Jung
requested to merge
ralf/difference_union
into
master
6 years ago
Overview
4
Commits
1
Pipelines
0
Changes
1
Expand
0
0
Merge request reports
Compare
master
version 2
196bf6d8
6 years ago
version 1
1461ed91
6 years ago
master (base)
and
latest version
latest version
9bfa00b2
1 commit,
6 years ago
version 2
196bf6d8
1 commit,
6 years ago
version 1
1461ed91
1 commit,
6 years ago
1 file
+
4
−
1
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
theories/collections.v
+
4
−
1
Options
@@ -622,7 +622,8 @@ Section collection.
Proof
.
set_solver
.
Qed
.
Lemma
subset_difference_elem_of
{
x
:
A
}
{
s
:
C
}
(
inx
:
x
∈
s
):
s
∖
{[
x
]}
⊂
s
.
Proof
.
set_solver
.
Qed
.
Lemma
difference_difference
X
Y
Z
:
(
X
∖
Y
)
∖
Z
≡
X
∖
(
Y
∪
Z
)
.
Proof
.
set_solver
.
Qed
.
Lemma
difference_mono
X1
X2
Y1
Y2
:
X1
⊆
X2
→
Y2
⊆
Y1
→
X1
∖
Y1
⊆
X2
∖
Y2
.
@@ -688,6 +689,8 @@ Section collection.
Proof
.
unfold_leibniz
.
apply
difference_intersection_distr_l
.
Qed
.
Lemma
difference_disjoint_L
X
Y
:
X
##
Y
→
X
∖
Y
=
X
.
Proof
.
unfold_leibniz
.
apply
difference_disjoint
.
Qed
.
Lemma
difference_difference_L
X
Y
Z
:
(
X
∖
Y
)
∖
Z
=
X
∖
(
Y
∪
Z
)
.
Proof
.
unfold_leibniz
.
apply
difference_difference
.
Qed
.
(** Disjointness *)
Lemma
disjoint_intersection_L
X
Y
:
X
##
Y
↔
X
∩
Y
=
∅.
Loading