Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Merge requests
!81
add inverses of bool_decide_{true,false}
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
add inverses of bool_decide_{true,false}
ralf/bool_decide
into
master
Overview
19
Commits
7
Pipelines
0
Changes
1
All threads resolved!
Hide all comments
Merged
Ralf Jung
requested to merge
ralf/bool_decide
into
master
5 years ago
Overview
19
Commits
7
Pipelines
0
Changes
1
All threads resolved!
Hide all comments
Expand
0
0
Merge request reports
Compare
master
version 6
1b14d7a1
5 years ago
version 5
1984ac3a
5 years ago
version 4
e308a9fb
5 years ago
version 3
89a5e9bc
5 years ago
version 2
82b3e17d
5 years ago
version 1
0fbbe7ac
5 years ago
master (base)
and
latest version
latest version
904e6f28
7 commits,
5 years ago
version 6
1b14d7a1
6 commits,
5 years ago
version 5
1984ac3a
5 commits,
5 years ago
version 4
e308a9fb
4 commits,
5 years ago
version 3
89a5e9bc
3 commits,
5 years ago
version 2
82b3e17d
2 commits,
5 years ago
version 1
0fbbe7ac
1 commit,
5 years ago
1 file
+
19
−
4
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
theories/decidable.v
+
19
−
4
Options
@@ -112,14 +112,29 @@ Proof. rewrite bool_decide_spec; trivial. Qed.
Lemma
bool_decide_pack
(
P
:
Prop
)
{
dec
:
Decision
P
}
:
P
→
bool_decide
P
.
Proof
.
rewrite
bool_decide_spec
;
trivial
.
Qed
.
Hint
Resolve
bool_decide_pack
:
core
.
Lemma
bool_decide_true
(
P
:
Prop
)
`{
Decision
P
}
:
P
→
bool_decide
P
=
true
.
Proof
.
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_false
(
P
:
Prop
)
`{
Decision
P
}
:
¬
P
→
bool_decide
P
=
false
.
Proof
.
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_eq_true
(
P
:
Prop
)
`{
Decision
P
}
:
bool_decide
P
=
true
↔
P
.
Proof
.
case_bool_decide
;
intuition
discriminate
.
Qed
.
Lemma
bool_decide_eq_false
(
P
:
Prop
)
`{
Decision
P
}
:
bool_decide
P
=
false
↔
¬
P
.
Proof
.
case_bool_decide
;
intuition
discriminate
.
Qed
.
Lemma
bool_decide_iff
(
P
Q
:
Prop
)
`{
Decision
P
,
Decision
Q
}
:
(
P
↔
Q
)
→
bool_decide
P
=
bool_decide
Q
.
Proof
.
repeat
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_eq_true_1
P
`{
!
Decision
P
}:
bool_decide
P
=
true
→
P
.
Proof
.
apply
bool_decide_eq_true
.
Qed
.
Lemma
bool_decide_eq_true_2
P
`{
!
Decision
P
}:
P
→
bool_decide
P
=
true
.
Proof
.
apply
bool_decide_eq_true
.
Qed
.
Lemma
bool_decide_eq_false_1
P
`{
!
Decision
P
}:
bool_decide
P
=
false
→
¬
P
.
Proof
.
apply
bool_decide_eq_false
.
Qed
.
Lemma
bool_decide_eq_false_2
P
`{
!
Decision
P
}:
¬
P
→
bool_decide
P
=
false
.
Proof
.
apply
bool_decide_eq_false
.
Qed
.
(** Backwards compatibility notations. *)
Notation
bool_decide_true
:=
bool_decide_eq_true_2
.
Notation
bool_decide_false
:=
bool_decide_eq_false_2
.
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
equal as Coq does not support proof irrelevance. For decidable we
Loading