Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jules Jacobs
Iris
Commits
6d66d9d1
Commit
6d66d9d1
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Support ■ (∀ _, _) and ■ (_ → _) in iIntros.
parent
d4a687a8
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
proofmode/coq_tactics.v
+7
-0
7 additions, 0 deletions
proofmode/coq_tactics.v
proofmode/tactics.v
+3
-1
3 additions, 1 deletion
proofmode/tactics.v
with
10 additions
and
1 deletion
proofmode/coq_tactics.v
+
7
−
0
View file @
6d66d9d1
...
...
@@ -475,6 +475,9 @@ Proof.
intros
??
HQ
.
rewrite
envs_app_sound
//
;
simpl
.
apply
impl_intro_l
.
by
rewrite
right_id
{
1
}(
into_persistentP
P
)
always_and_sep_l
wand_elim_r
.
Qed
.
Lemma
tac_pure_impl_intro
Δ
(
φ
ψ
:
Prop
)
:
(
φ
→
Δ
⊢
■
ψ
)
→
Δ
⊢
■
(
φ
→
ψ
)
.
Proof
.
intros
.
rewrite
pure_impl
.
by
apply
impl_intro_l
,
pure_elim_l
.
Qed
.
Lemma
tac_impl_intro_pure
Δ
P
φ
Q
:
IntoPure
P
φ
→
(
φ
→
Δ
⊢
Q
)
→
Δ
⊢
P
→
Q
.
Proof
.
intros
.
by
apply
impl_intro_l
;
rewrite
(
into_pure
P
);
apply
pure_elim_l
.
...
...
@@ -777,6 +780,10 @@ Qed.
Lemma
tac_forall_intro
{
A
}
Δ
(
Φ
:
A
→
uPred
M
)
:
(
∀
a
,
Δ
⊢
Φ
a
)
→
Δ
⊢
∀
a
,
Φ
a
.
Proof
.
apply
forall_intro
.
Qed
.
Lemma
tac_pure_forall_intro
{
A
}
Δ
(
φ
:
A
→
Prop
)
:
(
∀
a
,
Δ
⊢
■
φ
a
)
→
Δ
⊢
■
∀
a
,
φ
a
.
Proof
.
intros
.
rewrite
pure_forall
.
by
apply
forall_intro
.
Qed
.
Class
ForallSpecialize
{
As
}
(
xs
:
hlist
As
)
(
P
:
uPred
M
)
(
Φ
:
himpl
As
(
uPred
M
))
:=
forall_specialize
:
P
⊢
Φ
xs
.
Arguments
forall_specialize
{_}
_
_
_
{_}
.
...
...
This diff is collapsed.
Click to expand it.
proofmode/tactics.v
+
3
−
1
View file @
6d66d9d1
...
...
@@ -684,7 +684,9 @@ Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
apply
_
||
fail
"iIntro:"
P
"not pure"
|]
|
(* (?P -∗ _) *)
eapply
tac_wand_intro_pure
;
[
let
P
:=
match
goal
with
|
-
IntoPure
?P
_
=>
P
end
in
apply
_
||
fail
"iIntro:"
P
"not pure"
|]];
apply
_
||
fail
"iIntro:"
P
"not pure"
|]
|
(* (■ ∀ _, _) *)
apply
tac_pure_forall_intro
|
(* (■ (_ → _)) *)
apply
tac_pure_impl_intro
];
intros
x
.
Local
Tactic
Notation
"iIntro"
constr
(
H
)
:=
first
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment