Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jules Jacobs
Iris
Commits
de234db0
Commit
de234db0
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.mpi-sws.org:FP/iris-coq
parents
295af2d4
b0327383
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
prelude/collections.v
+19
-0
19 additions, 0 deletions
prelude/collections.v
proofmode/tactics.v
+4
-2
4 additions, 2 deletions
proofmode/tactics.v
with
23 additions
and
2 deletions
prelude/collections.v
+
19
−
0
View file @
de234db0
...
...
@@ -41,6 +41,25 @@ Section simple_collection.
Lemma
elem_of_disjoint
X
Y
:
X
⊥
Y
↔
∀
x
,
x
∈
X
→
x
∈
Y
→
False
.
Proof
.
done
.
Qed
.
Global
Instance
disjoint_sym
:
Symmetric
(
@
disjoint
C
_)
.
Proof
.
intros
??
.
rewrite
!
elem_of_disjoint
;
naive_solver
.
Qed
.
Lemma
disjoint_empty_l
Y
:
∅
⊥
Y
.
Proof
.
rewrite
elem_of_disjoint
;
intros
x
;
by
rewrite
elem_of_empty
.
Qed
.
Lemma
disjoint_empty_r
X
:
X
⊥
∅.
Proof
.
rewrite
(
symmetry_iff
_);
apply
disjoint_empty_l
.
Qed
.
Lemma
disjoint_singleton_l
x
Y
:
{[
x
]}
⊥
Y
↔
x
∉
Y
.
Proof
.
rewrite
elem_of_disjoint
;
setoid_rewrite
elem_of_singleton
;
naive_solver
.
Qed
.
Lemma
disjoint_singleton_r
y
X
:
X
⊥
{[
y
]}
↔
y
∉
X
.
Proof
.
rewrite
(
symmetry_iff
(
⊥
))
.
apply
disjoint_singleton_l
.
Qed
.
Lemma
disjoint_union_l
X1
X2
Y
:
X1
∪
X2
⊥
Y
↔
X1
⊥
Y
∧
X2
⊥
Y
.
Proof
.
rewrite
!
elem_of_disjoint
;
setoid_rewrite
elem_of_union
;
naive_solver
.
Qed
.
Lemma
disjoint_union_r
X
Y1
Y2
:
X
⊥
Y1
∪
Y2
↔
X
⊥
Y1
∧
X
⊥
Y2
.
Proof
.
rewrite
!
(
symmetry_iff
(
⊥
)
X
)
.
apply
disjoint_union_l
.
Qed
.
Lemma
collection_positive_l
X
Y
:
X
∪
Y
≡
∅
→
X
≡
∅.
Proof
.
rewrite
!
elem_of_equiv_empty
.
setoid_rewrite
elem_of_union
.
naive_solver
.
...
...
This diff is collapsed.
Click to expand it.
proofmode/tactics.v
+
4
−
2
View file @
de234db0
...
...
@@ -24,8 +24,10 @@ Ltac iFresh :=
|
-
of_envs
?Δ
⊢
_
=>
match
goal
with
|
_
=>
eval
vm_compute
in
(
fresh_string_of_set
"~"
(
dom
stringset
Δ
))
(* [vm_compute fails] if [Δ] contains evars, so fall-back to [cbv] *)
|
_
=>
eval
cbv
in
(
fresh_string_of_set
"~"
(
dom
stringset
Δ
))
|
_
=>
(* [vm_compute fails] if [Δ] contains evars, so fall-back to [cbv] *)
let
Hs
:=
eval
cbv
in
(
dom
stringset
Δ
)
in
eval
vm_compute
in
(
fresh_string_of_set
"~"
Hs
)
end
|
_
=>
constr
:
"~"
end
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment