Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Matthieu Sozeau
Iris
Commits
b6a32bbb
Commit
b6a32bbb
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
derive that when we obtain validity of an ownG, we can keep ownership
parent
e241324a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
iris/ownership.v
+2
-0
2 additions, 0 deletions
iris/ownership.v
iris/viewshifts.v
+1
-1
1 addition, 1 deletion
iris/viewshifts.v
modures/logic.v
+38
-0
38 additions, 0 deletions
modures/logic.v
with
41 additions
and
1 deletion
iris/ownership.v
+
2
−
0
View file @
b6a32bbb
...
...
@@ -55,6 +55,8 @@ Proof.
Qed
.
Lemma
ownG_valid
m
:
(
ownG
m
)
⊑
(
✓
m
)
.
Proof
.
by
rewrite
/
ownG
uPred
.
own_valid
;
apply
uPred
.
valid_mono
=>
n
[?
[]]
.
Qed
.
Lemma
ownG_valid_r
m
:
(
ownG
m
)
⊑
(
ownG
m
★
✓
m
)
.
Proof
.
apply
uPred
.
always_entails_r'
,
ownG_valid
;
by
apply
_
.
Qed
.
Global
Instance
ownG_timeless
m
:
Timeless
m
→
TimelessP
(
ownG
m
)
.
Proof
.
rewrite
/
ownG
;
apply
_
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
iris/viewshifts.v
+
1
−
1
View file @
b6a32bbb
...
...
@@ -19,7 +19,7 @@ Implicit Types P Q : iProp Σ.
Implicit
Types
m
:
iGst
Σ
.
Import
uPred
.
Lemma
vs_alt
E1
E2
P
Q
:
P
⊑
pvs
E1
E2
Q
→
P
>
{
E1
,
E2
}
>
Q
.
Lemma
vs_alt
E1
E2
P
Q
:
(
P
⊑
pvs
E1
E2
Q
)
→
P
>
{
E1
,
E2
}
>
Q
.
Proof
.
intros
;
rewrite
-
{
1
}
always_const
;
apply
always_intro
,
impl_intro_l
.
by
rewrite
always_const
(
right_id
_
_)
.
...
...
This diff is collapsed.
Click to expand it.
modures/logic.v
+
38
−
0
View file @
b6a32bbb
...
...
@@ -433,6 +433,15 @@ Lemma impl_elim_l' P Q R : P ⊑ (Q → R) → (P ∧ Q) ⊑ R.
Proof
.
intros
;
apply
impl_elim
with
Q
;
auto
.
Qed
.
Lemma
impl_elim_r'
P
Q
R
:
Q
⊑
(
P
→
R
)
→
(
P
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
impl_elim
with
P
;
auto
.
Qed
.
Lemma
impl_entails
P
Q
:
True
⊑
(
P
→
Q
)
→
P
⊑
Q
.
Proof
.
intros
H
;
eapply
impl_elim
;
last
reflexivity
.
rewrite
-
H
.
by
apply
True_intro
.
Qed
.
Lemma
entails_impl
P
Q
:
(
P
⊑
Q
)
→
True
⊑
(
P
→
Q
)
.
Proof
.
intros
H
;
apply
impl_intro_l
.
by
rewrite
-
H
and_elim_l
.
Qed
.
Lemma
const_elim_l
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
■
φ
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
...
...
@@ -737,6 +746,26 @@ Proof.
apply
always_intro
,
impl_intro_r
.
by
rewrite
always_and_sep_l
always_elim
wand_elim_l
.
Qed
.
Lemma
always_impl_l
P
Q
:
(
P
→
□
Q
)
⊑
(
P
→
□
Q
★
P
)
.
Proof
.
rewrite
-
always_and_sep_l
.
apply
impl_intro_l
,
and_intro
.
-
by
rewrite
impl_elim_r
.
-
by
rewrite
and_elim_l
.
Qed
.
Lemma
always_impl_r
P
Q
:
(
P
→
□
Q
)
⊑
(
P
→
P
★
□
Q
)
.
Proof
.
by
rewrite
commutative
always_impl_l
.
Qed
.
Lemma
always_entails_l
P
Q
:
(
P
⊑
□
Q
)
→
P
⊑
(
□
Q
★
P
)
.
Proof
.
intros
H
.
apply
impl_entails
.
rewrite
-
always_impl_l
.
by
apply
entails_impl
.
Qed
.
Lemma
always_entails_r
P
Q
:
(
P
⊑
□
Q
)
→
P
⊑
(
P
★
□
Q
)
.
Proof
.
intros
H
.
apply
impl_entails
.
rewrite
-
always_impl_r
.
by
apply
entails_impl
.
Qed
.
(* Own *)
Lemma
own_op
(
a1
a2
:
M
)
:
...
...
@@ -909,4 +938,13 @@ Lemma always_and_sep_r' P Q `{!AlwaysStable Q} : (P ∧ Q)%I ≡ (P ★ Q)%I.
Proof
.
by
rewrite
-
(
always_always
Q
)
always_and_sep_r
.
Qed
.
Lemma
always_sep_dup'
P
`{
!
AlwaysStable
P
}
:
P
≡
(
P
★
P
)
%
I
.
Proof
.
by
rewrite
-
(
always_always
P
)
-
always_sep_dup
.
Qed
.
Lemma
always_impl_l'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
→
Q
)
⊑
(
P
→
Q
★
P
)
.
Proof
.
by
rewrite
-
(
always_always
Q
)
always_impl_l
.
Qed
.
Lemma
always_impl_r'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
→
Q
)
⊑
(
P
→
P
★
Q
)
.
Proof
.
by
rewrite
-
(
always_always
Q
)
always_impl_r
.
Qed
.
Lemma
always_entails_l'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
⊑
Q
)
→
P
⊑
(
Q
★
P
)
.
Proof
.
by
rewrite
-
(
always_always
Q
);
apply
always_entails_l
.
Qed
.
Lemma
always_entails_r'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
⊑
Q
)
→
P
⊑
(
P
★
Q
)
.
Proof
.
by
rewrite
-
(
always_always
Q
);
apply
always_entails_r
.
Qed
.
End
uPred_logic
.
End
uPred
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment