Skip to content
Snippets Groups Projects
Commit e12e5401 authored by Ralf Jung's avatar Ralf Jung
Browse files

Merge branch 'master' of gitlab.mpi-sws.org:FP/iris-coq

parents f03cadcf 45954c6f
No related branches found
No related tags found
No related merge requests found
......@@ -1208,8 +1208,14 @@ Section option.
Lemma Some_included x y : Some x Some y x y x y.
Proof. rewrite option_included; naive_solver. Qed.
Lemma Some_included' `{CMRATotal A} x y : Some x Some y x y.
Lemma Some_included_2 x y : x y Some x Some y.
Proof. rewrite Some_included; eauto. Qed.
Lemma Some_included_total `{CMRATotal A} x y : Some x Some y x y.
Proof. rewrite Some_included. split. by intros [->|?]. eauto. Qed.
Lemma Some_included_exclusive x `{!Exclusive x} y :
Some x Some y y x y.
Proof. move=> /Some_included [//|/exclusive_included]; tauto. Qed.
Lemma is_Some_included mx my : mx my is_Some mx is_Some my.
Proof. rewrite -!not_eq_None_Some option_included. naive_solver. Qed.
End option.
......@@ -1217,6 +1223,19 @@ End option.
Arguments optionR : clear implicits.
Arguments optionUR : clear implicits.
Section option_prod.
Context {A B : cmraT}.
Lemma Some_pair_included (x1 x2 : A) (y1 y2 : B) :
Some (x1,y1) Some (x2,y2) Some x1 Some x2 Some y1 Some y2.
Proof. rewrite !Some_included. intros [[??]|[??]%prod_included]; eauto. Qed.
Lemma Some_pair_included_total_1 `{CMRATotal A} (x1 x2 : A) (y1 y2 : B) :
Some (x1,y1) Some (x2,y2) x1 x2 Some y1 Some y2.
Proof. intros ?%Some_pair_included. by rewrite -(Some_included_total x1). Qed.
Lemma Some_pair_included_total_2 `{CMRATotal B} (x1 x2 : A) (y1 y2 : B) :
Some (x1,y1) Some (x2,y2) Some x1 Some x2 y1 y2.
Proof. intros ?%Some_pair_included. by rewrite -(Some_included_total y1). Qed.
End option_prod.
Instance option_fmap_cmra_monotone {A B : cmraT} (f: A B) `{!CMRAMonotone f} :
CMRAMonotone (fmap f : option A option B).
Proof.
......
......@@ -31,21 +31,19 @@ Instance dec_agree_pcore : PCore (dec_agree A) := Some.
Definition dec_agree_ra_mixin : RAMixin (dec_agree A).
Proof.
split.
- apply _.
- intros x y cx ? [=<-]; eauto.
- apply _.
apply ra_total_mixin; apply _ || eauto.
- intros [?|] [?|] [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] ? [=<-]; by repeat (simplify_eq/= || case_match).
- intros [?|]; by repeat (simplify_eq/= || case_match).
- intros [?|] [?|] ?? [=<-]; eauto.
- by intros [?|] [?|] ?.
Qed.
Canonical Structure dec_agreeR : cmraT :=
discreteR (dec_agree A) dec_agree_ra_mixin.
Global Instance dec_agree_total : CMRATotal dec_agreeR.
Proof. intros x. by exists x. Qed.
(* Some properties of this CMRA *)
Global Instance dec_agree_persistent (x : dec_agreeR) : Persistent x.
Proof. by constructor. Qed.
......@@ -59,8 +57,10 @@ Proof. destruct x; by rewrite /= ?decide_True. Qed.
Lemma dec_agree_op_inv (x1 x2 : dec_agree A) : (x1 x2) x1 = x2.
Proof. destruct x1, x2; by repeat (simplify_eq/= || case_match). Qed.
Lemma DecAgree_included a b : DecAgree a DecAgree b a = b.
Proof. intros [[c|] [=]%leibniz_equiv_iff]. by simplify_option_eq. Qed.
Lemma DecAgree_included a b : DecAgree a DecAgree b a = b.
Proof.
split. intros [[c|] [=]%leibniz_equiv]. by simplify_option_eq. by intros ->.
Qed.
End dec_agree.
Arguments dec_agreeC : clear implicits.
......
......@@ -256,37 +256,29 @@ Global Instance gmap_singleton_persistent i (x : A) :
Proof. intros. by apply persistent_total, core_singleton'. Qed.
Lemma singleton_includedN n m i x :
{[ i := x ]} {n} m y, m !! i {n} Some y (x {n} y x {n} y).
{[ i := x ]} {n} m y, m !! i {n} Some y Some x {n} Some y.
Proof.
split.
- move=> [m' /(_ i)]; rewrite lookup_op lookup_singleton.
case (m' !! i)=> [y|]=> Hm.
+ exists (x y); eauto using cmra_includedN_l.
+ exists x; eauto.
- intros (y&Hi&[[z ?]| ->]).
+ exists (<[i:=z]>m)=> j; destruct (decide (i = j)) as [->|].
* rewrite Hi lookup_op lookup_singleton lookup_insert. by constructor.
* by rewrite lookup_op lookup_singleton_ne // lookup_insert_ne // left_id.
+ exists (delete i m)=> j; destruct (decide (i = j)) as [->|].
* by rewrite Hi lookup_op lookup_singleton lookup_delete.
* by rewrite lookup_op lookup_singleton_ne // lookup_delete_ne // left_id.
- move=> [m' /(_ i)]; rewrite lookup_op lookup_singleton=> Hi.
exists (x ? m' !! i). rewrite -Some_op_opM.
split. done. apply cmra_includedN_l.
- intros (y&Hi&[mz Hy]). exists (partial_alter (λ _, mz) i m).
intros j; destruct (decide (i = j)) as [->|].
+ by rewrite lookup_op lookup_singleton lookup_partial_alter Hi.
+ by rewrite lookup_op lookup_singleton_ne// lookup_partial_alter_ne// left_id.
Qed.
(* We do not have [x ≼ y ↔ ∀ n, x ≼{n} y], so we cannot use the previous lemma *)
Lemma singleton_included m i x :
{[ i := x ]} m y, m !! i Some y (x y x y).
{[ i := x ]} m y, m !! i Some y Some x Some y.
Proof.
split.
- move=> [m' /(_ i)]; rewrite lookup_op lookup_singleton.
case (m' !! i)=> [y|]=> Hm.
+ exists (x y); eauto using cmra_included_l.
+ exists x; eauto.
- intros (y&Hi&[[z ?]| ->]).
+ exists (<[i:=z]>m)=> j; destruct (decide (i = j)) as [->|].
* rewrite Hi lookup_op lookup_singleton lookup_insert. by constructor.
* by rewrite lookup_op lookup_singleton_ne // lookup_insert_ne // left_id.
+ exists (delete i m)=> j; destruct (decide (i = j)) as [->|].
* by rewrite Hi lookup_op lookup_singleton lookup_delete.
* by rewrite lookup_op lookup_singleton_ne // lookup_delete_ne // left_id.
exists (x ? m' !! i). rewrite -Some_op_opM.
split. done. apply cmra_included_l.
- intros (y&Hi&[mz Hy]). exists (partial_alter (λ _, mz) i m).
intros j; destruct (decide (i = j)) as [->|].
+ by rewrite lookup_op lookup_singleton lookup_partial_alter Hi.
+ by rewrite lookup_op lookup_singleton_ne// lookup_partial_alter_ne// left_id.
Qed.
Lemma insert_updateP (P : A Prop) (Q : gmap K A Prop) m i x :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment