Newer
Older
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import wsat ownership.
Local Hint Extern 100 (@eq coPset _ _) => set_solver.
repeat match goal with
| H : wsat _ _ _ _ |- _ => apply wsat_valid in H; last omega
end; solve_validN.
Context {Λ : language} {Σ : iFunctor}.
Implicit Types v : val Λ.
Implicit Types e : expr Λ.
Implicit Types σ : state Λ.
Implicit Types P Q : iProp Λ Σ.
Implicit Types Φ : val Λ → iProp Λ Σ.
Notation wp_fork ef := (default True ef (flip (wp ⊤) (λ _, ■ True)))%I.
(φ : expr Λ → state Λ → option (expr Λ) → Prop) Φ e1 σ1 :
(|={E1,E2}=> ▷ ownP σ1 ★ ▷ ∀ e2 σ2 ef,
(■ φ e2 σ2 ef ∧ ownP σ2) -★ |={E2,E1}=> #> e2 @ E1 {{ Φ }} ★ wp_fork ef)
intros ? He Hsafe Hstep. rewrite pvs_eq wp_eq.
uPred.unseal; split=> n r ? Hvs; constructor; auto.
intros rf k Ef σ1' ???; destruct (Hvs rf (S k) Ef σ1')
as (r'&(r1&r2&?&?&Hwp)&Hws); auto; clear Hvs; cofe_subst r'.
destruct (wsat_update_pst k (E2 ∪ Ef) σ1 σ1' r1 (r2 ⋅ rf)) as [-> Hws'].

Ralf Jung
committed
{ apply equiv_dist. rewrite -(ownP_spec k); auto. }
constructor; [done|intros e2 σ2 ef ?; specialize (Hws' σ2)].
destruct (λ H1 H2 H3, Hwp e2 σ2 ef k (update_pst σ2 r1) H1 H2 H3 rf k Ef σ2)
{ split. by eapply Hstep. apply ownP_spec; auto. }
{ rewrite (comm _ r2) -assoc; eauto using wsat_le. }
exists r1', r2'; split_and?; try done. by uPred.unseal; intros ? ->.
Lemma wp_lift_pure_step E (φ : expr Λ → option (expr Λ) → Prop) Φ e1 :
(∀ σ1, reducible e1 σ1) →
(∀ σ1 e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → σ1 = σ2 ∧ φ e2 ef) →
(▷ ∀ e2 ef, ■ φ e2 ef → #> e2 @ E {{ Φ }} ★ wp_fork ef) ⊢ #> e1 @ E {{ Φ }}.
intros He Hsafe Hstep; rewrite wp_eq; uPred.unseal.
split=> n r ? Hwp; constructor; auto.
intros rf k Ef σ1 ???; split; [done|]. destruct n as [|n]; first lia.
intros e2 σ2 ef ?; destruct (Hstep σ1 e2 σ2 ef); auto; subst.
destruct (Hwp e2 ef k r) as (r1&r2&Hr&?&?); auto.
exists r1,r2; split_and?; try done.
- rewrite -Hr; eauto using wsat_le.
- uPred.unseal; by intros ? ->.
(** Derived lifting lemmas. *)
Lemma wp_lift_atomic_step {E Φ} e1
(φ : val Λ → state Λ → option (expr Λ) → Prop) σ1 :
to_val e1 = None →
reducible e1 σ1 →
(∀ e2 σ2 ef,
prim_step e1 σ1 e2 σ2 ef → ∃ v2, to_val e2 = Some v2 ∧ φ v2 σ2 ef) →

Ralf Jung
committed
(▷ ownP σ1 ★ ▷ ∀ v2 σ2 ef, ■ φ v2 σ2 ef ∧ ownP σ2 -★ Φ v2 ★ wp_fork ef)
intros. rewrite -(wp_lift_step E E (λ e2 σ2 ef, ∃ v2,
to_val e2 = Some v2 ∧ φ v2 σ2 ef) _ e1 σ1) //; [].
rewrite -pvs_intro. apply sep_mono, later_mono; first done.
apply forall_intro=>e2'; apply forall_intro=>σ2'.
apply forall_intro=>ef; apply wand_intro_l.
rewrite always_and_sep_l -assoc -always_and_sep_l.

Ralf Jung
committed
apply const_elim_l=>-[v2' [Hv ?]] /=.
rewrite -pvs_intro.
rewrite (forall_elim v2') (forall_elim σ2') (forall_elim ef) const_equiv //.
by rewrite left_id wand_elim_r -(wp_value _ _ e2' v2').
Qed.
Lemma wp_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 ef :
to_val e1 = None →
reducible e1 σ1 →
(∀ e2' σ2' ef', prim_step e1 σ1 e2' σ2' ef' →
σ2 = σ2' ∧ to_val e2' = Some v2 ∧ ef = ef') →
(▷ ownP σ1 ★ ▷ (ownP σ2 -★ Φ v2 ★ wp_fork ef)) ⊢ #> e1 @ E {{ Φ }}.
Proof.
intros. rewrite -(wp_lift_atomic_step _ (λ v2' σ2' ef',
σ2 = σ2' ∧ v2 = v2' ∧ ef = ef') σ1) //; last naive_solver.
apply sep_mono, later_mono; first done.

Ralf Jung
committed
apply forall_intro=>e2'; apply forall_intro=>σ2'; apply forall_intro=>ef'.
apply wand_intro_l.
rewrite always_and_sep_l -assoc -always_and_sep_l.
apply const_elim_l=>-[-> [-> ->]] /=. by rewrite wand_elim_r.
Qed.
Lemma wp_lift_pure_det_step {E Φ} e1 e2 ef :
to_val e1 = None →
(∀ σ1, reducible e1 σ1) →
(∀ σ1 e2' σ2 ef', prim_step e1 σ1 e2' σ2 ef' → σ1 = σ2 ∧ e2 = e2' ∧ ef = ef')→
▷ (#> e2 @ E {{ Φ }} ★ wp_fork ef) ⊢ #> e1 @ E {{ Φ }}.
Proof.
intros.
rewrite -(wp_lift_pure_step E (λ e2' ef', e2 = e2' ∧ ef = ef') _ e1) //=.

Ralf Jung
committed
apply later_mono, forall_intro=>e'; apply forall_intro=>ef'.
by apply impl_intro_l, const_elim_l=>-[-> ->].
Qed.