Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maxime Dénès
iris-coq
Commits
a6f31142
Commit
a6f31142
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
strengthen adequacy: allow ownership of an arbitrary valid ghost in the beginning
parent
951d8927
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
iris/adequacy.v
+30
-18
30 additions, 18 deletions
iris/adequacy.v
iris/wsat.v
+4
-3
4 additions, 3 deletions
iris/wsat.v
with
34 additions
and
21 deletions
iris/adequacy.v
+
30
−
18
View file @
a6f31142
...
...
@@ -63,46 +63,58 @@ Proof.
apply
Hht
with
r1
(
k
+
n
);
eauto
using
@
ra_included_unit
.
by
destruct
(
k
+
n
)
.
Qed
.
Theorem
ht_adequacy_result
E
φ
e
v
t2
σ1
σ2
:
{{
ownP
σ1
}}
e
@
E
{{
λ
v'
,
■
φ
v'
}}
→
Lemma
ht_adequacy_own
Q
e1
t2
σ1
m
σ2
:
✓
m
→
{{
ownP
σ1
★
ownG
m
}}
e1
@
coPset_all
{{
Q
}}
→
rtc
step
([
e1
],
σ1
)
(
t2
,
σ2
)
→
∃
rs2
Qs'
,
wptp
3
t2
((
λ
v
,
pvs
coPset_all
coPset_all
(
Q
v
))
::
Qs'
)
rs2
∧
wsat
3
coPset_all
σ2
(
big_op
rs2
)
.
Proof
.
intros
Hv
?
[
k
?]
%
rtc_nsteps
.
eapply
ht_adequacy_steps
with
(
r1
:=
(
Res
∅
(
Excl
σ1
)
m
));
eauto
;
[|]
.
-
by
rewrite
Nat
.
add_comm
;
apply
wsat_init
,
cmra_valid_validN
.
-
exists
(
Res
∅
(
Excl
σ1
)
∅
),
(
Res
∅
∅
m
)
.
split_ands
.
+
by
rewrite
/
op
/
cmra_op
/=
/
res_op
/=
!
ra_empty_l
ra_empty_r
.
+
by
rewrite
/
uPred_holds
/=.
+
by
apply
ownG_spec
.
Qed
.
Theorem
ht_adequacy_result
E
φ
e
v
t2
σ1
m
σ2
:
✓
m
→
{{
ownP
σ1
★
ownG
m
}}
e
@
E
{{
λ
v'
,
■
φ
v'
}}
→
rtc
step
([
e
],
σ1
)
(
of_val
v
::
t2
,
σ2
)
→
φ
v
.
Proof
.
intros
?
[
k
?]
%
rtc_nstep
s
.
destruct
(
ht_adequacy_
steps
(
ownP
σ1
)
(
λ
v'
,
■
φ
v'
)
%
I
k
2
e
(
of_val
v
::
t2
)
σ1
σ2
(
Res
∅
(
Excl
σ1
)
∅
))
as
(
rs2
&
Qs
&
Hwptp
&
?);
auto
.
intros
Hv
?
H
s
.
destruct
(
ht_adequacy_
own
(
λ
v'
,
■
φ
v'
)
%
I
e
(
of_val
v
::
t2
)
σ1
m
σ2
)
as
(
rs2
&
Qs
&
Hwptp
&
?);
auto
.
{
by
rewrite
-
(
ht_mask_weaken
E
coPset_all
)
.
}
{
rewrite
Nat
.
add_comm
;
apply
wsat_init
.
}
{
by
rewrite
/
uPred_holds
/=.
}
inversion
Hwptp
as
[|??
r
??
rs
Hwp
_];
clear
Hwptp
;
subst
.
apply
wp_value_inv
in
Hwp
;
destruct
(
Hwp
(
big_op
rs
)
2
∅
σ2
)
as
[
r'
[]];
auto
.
apply
wp_value_inv
in
Hwp
;
destruct
(
Hwp
(
big_op
rs
)
3
∅
σ2
)
as
[
r'
[]];
auto
.
by
rewrite
right_id_L
.
Qed
.
Lemma
ht_adequacy_reducible
E
Q
e1
e2
t2
σ1
σ2
:
{{
ownP
σ1
}}
e1
@
E
{{
Q
}}
→
Lemma
ht_adequacy_reducible
E
Q
e1
e2
t2
σ1
m
σ2
:
✓
m
→
{{
ownP
σ1
★
ownG
m
}}
e1
@
E
{{
Q
}}
→
rtc
step
([
e1
],
σ1
)
(
t2
,
σ2
)
→
e2
∈
t2
→
to_val
e2
=
None
→
reducible
e2
σ2
.
Proof
.
intros
?
[
k
?]
%
rtc_nsteps
[
i
?]
%
elem_of_list_lookup
He
.
destruct
(
ht_adequacy_steps
(
ownP
σ1
)
Q
k
3 e1
t2
σ1
σ2
(
Res
∅
(
Excl
σ1
)
∅
))
as
(
rs2
&
Qs
&
?
&
?);
auto
.
intros
Hv
?
Hs
[
i
?]
%
elem_of_list_lookup
He
.
destruct
(
ht_adequacy_own
Q
e1
t2
σ1
m
σ2
)
as
(
rs2
&
Qs
&
?
&
?);
auto
.
{
by
rewrite
-
(
ht_mask_weaken
E
coPset_all
)
.
}
{
rewrite
Nat
.
add_comm
;
apply
wsat_init
.
}
{
by
rewrite
/
uPred_holds
/=.
}
destruct
(
Forall3_lookup_l
(
λ
e
Q
r
,
wp
coPset_all
e
Q
3
r
)
t2
(
pvs
coPset_all
coPset_all
∘
Q
::
Qs
)
rs2
i
e2
)
as
(
Q'
&
r2
&
?
&
?
&
Hwp
);
auto
.
destruct
(
wp_step_inv
coPset_all
∅
Q'
e2
2
3
σ2
r2
(
big_op
(
delete
i
rs2
)));
rewrite
?right_id_L
?big_op_delete
;
auto
.
Qed
.
Theorem
ht_adequacy_safe
E
Q
e1
t2
σ1
σ2
:
{{
ownP
σ1
}}
e1
@
E
{{
Q
}}
→
Theorem
ht_adequacy_safe
E
Q
e1
t2
σ1
m
σ2
:
✓
m
→
{{
ownP
σ1
★
ownG
m
}}
e1
@
E
{{
Q
}}
→
rtc
step
([
e1
],
σ1
)
(
t2
,
σ2
)
→
Forall
(
λ
e
,
is_Some
(
to_val
e
))
t2
∨
∃
t3
σ3
,
step
(
t2
,
σ2
)
(
t3
,
σ3
)
.
Proof
.
intros
.
destruct
(
decide
(
Forall
(
λ
e
,
is_Some
(
to_val
e
))
t2
))
as
[|
Ht2
];
[
by
left
|]
.
apply
(
not_Forall_Exists
_),
Exists_exists
in
Ht2
;
destruct
Ht2
as
(
e2
&
?
&
He2
)
.
destruct
(
ht_adequacy_reducible
E
Q
e1
e2
t2
σ1
σ2
)
as
(
e3
&
σ3
&
ef
&
?);
destruct
(
ht_adequacy_reducible
E
Q
e1
e2
t2
σ1
m
σ2
)
as
(
e3
&
σ3
&
ef
&
?);
rewrite
?eq_None_not_Some
;
auto
.
destruct
(
elem_of_list_split
t2
e2
)
as
(
t2'
&
t2''
&
->
);
auto
.
right
;
exists
(
t2'
++
e3
::
t2''
++
option_list
ef
),
σ3
;
econstructor
;
eauto
.
...
...
This diff is collapsed.
Click to expand it.
iris/wsat.v
+
4
−
3
View file @
a6f31142
...
...
@@ -63,11 +63,12 @@ Proof.
destruct
n
;
[
intros
;
apply
cmra_valid_0
|
intros
[
rs
?]]
.
eapply
cmra_valid_op_l
,
wsat_pre_valid
;
eauto
.
Qed
.
Lemma
wsat_init
k
E
σ
:
wsat
(
S
k
)
E
σ
(
Res
∅
(
Excl
σ
)
∅
)
.
Lemma
wsat_init
k
E
σ
m
:
✓
{
S
k
}
m
→
wsat
(
S
k
)
E
σ
(
Res
∅
(
Excl
σ
)
m
)
.
Proof
.
exists
∅
;
constructor
;
auto
.
intros
Hv
.
exists
∅
;
constructor
;
auto
.
*
rewrite
big_opM_empty
right_id
.
split_ands'
;
try
(
apply
cmra_valid_validN
,
ra_empty_valid
);
constructor
.
split_ands'
;
try
(
apply
cmra_valid_validN
,
ra_empty_valid
);
constructor
||
apply
Hv
.
*
by
intros
i
;
rewrite
lookup_empty
=>
-
[??]
.
*
intros
i
P
?;
rewrite
/=
(
left_id
_
_)
lookup_empty
;
inversion_clear
1
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment