Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maxime Dénès
iris-coq
Commits
aab09074
Commit
aab09074
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
docs: check \later and \always rules; sync with Coq
parent
984313aa
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/upred.v
+7
-6
7 additions, 6 deletions
algebra/upred.v
docs/logic.tex
+26
-27
26 additions, 27 deletions
docs/logic.tex
with
33 additions
and
33 deletions
algebra/upred.v
+
7
−
6
View file @
aab09074
...
...
@@ -917,8 +917,6 @@ Proof.
unseal
;
split
=>
n
x
?
HP
;
induction
n
as
[|
n
IH
];
[
by
apply
HP
|]
.
apply
HP
,
IH
,
uPred_weaken
with
(
S
n
)
x
;
eauto
using
cmra_validN_S
.
Qed
.
Lemma
later_True'
:
True
⊑
(
▷
True
:
uPred
M
)
.
Proof
.
unseal
;
by
split
=>
-
[|
n
]
x
.
Qed
.
Lemma
later_and
P
Q
:
(
▷
(
P
∧
Q
))
%
I
≡
(
▷
P
∧
▷
Q
)
%
I
.
Proof
.
unseal
;
split
=>
-
[|
n
]
x
;
by
split
.
Qed
.
Lemma
later_or
P
Q
:
(
▷
(
P
∨
Q
))
%
I
≡
(
▷
P
∨
▷
Q
)
%
I
.
...
...
@@ -927,9 +925,9 @@ Lemma later_forall {A} (Φ : A → uPred M) : (▷ ∀ a, Φ a)%I ≡ (∀ a,
Proof
.
unseal
;
by
split
=>
-
[|
n
]
x
.
Qed
.
Lemma
later_exist_1
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
∃
a
,
▷
Φ
a
)
⊑
(
▷
∃
a
,
Φ
a
)
.
Proof
.
unseal
;
by
split
=>
-
[|[|
n
]]
x
.
Qed
.
Lemma
later_exist
`{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∃
a
,
Φ
a
)
%
I
≡
(
∃
a
,
▷
Φ
a
)
%
I
.
Proof
.
unseal
;
split
=>
-
[|[|
n
]]
x
;
split
;
done
||
by
exists
inhabitant
.
Qed
.
Lemma
later_exist
'
`{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∃
a
,
Φ
a
)
%
I
⊑
(
∃
a
,
▷
Φ
a
)
%
I
.
Proof
.
unseal
;
split
=>
-
[|[|
n
]]
x
;
done
||
by
exists
inhabitant
.
Qed
.
Lemma
later_sep
P
Q
:
(
▷
(
P
★
Q
))
%
I
≡
(
▷
P
★
▷
Q
)
%
I
.
Proof
.
unseal
;
split
=>
n
x
?;
split
.
...
...
@@ -949,12 +947,15 @@ Global Instance later_flip_mono' :
Proper
(
flip
(
⊑
)
==>
flip
(
⊑
))
(
@
uPred_later
M
)
.
Proof
.
intros
P
Q
;
apply
later_mono
.
Qed
.
Lemma
later_True
:
(
▷
True
:
uPred
M
)
%
I
≡
True
%
I
.
Proof
.
apply
(
anti_symm
(
⊑
));
auto
using
later_
True'
.
Qed
.
Proof
.
apply
(
anti_symm
(
⊑
));
auto
using
later_
intro
.
Qed
.
Lemma
later_impl
P
Q
:
▷
(
P
→
Q
)
⊑
(
▷
P
→
▷
Q
)
.
Proof
.
apply
impl_intro_l
;
rewrite
-
later_and
.
apply
later_mono
,
impl_elim
with
P
;
auto
.
Qed
.
Lemma
later_exist
`{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∃
a
,
Φ
a
)
%
I
≡
(
∃
a
,
▷
Φ
a
)
%
I
.
Proof
.
apply
:
anti_symm
;
eauto
using
later_exist'
,
later_exist_1
.
Qed
.
Lemma
later_wand
P
Q
:
▷
(
P
-★
Q
)
⊑
(
▷
P
-★
▷
Q
)
.
Proof
.
apply
wand_intro_r
;
rewrite
-
later_sep
;
apply
later_mono
,
wand_elim_l
.
Qed
.
Lemma
later_iff
P
Q
:
(
▷
(
P
↔
Q
))
⊑
(
▷
P
↔
▷
Q
)
.
...
...
This diff is collapsed.
Click to expand it.
docs/logic.tex
+
26
−
27
View file @
aab09074
...
...
@@ -120,6 +120,8 @@ Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\t
\end{align*}
Recursive predicates must be
\emph
{
guarded
}
: in
$
\MU
\var
.
\pred
$
, the variable
$
\var
$
can only appear under the later
$
\later
$
modality.
Note that
$
\always
$
and
$
\later
$
bind more tightly than
$
*
$
,
$
\wand
$
,
$
\land
$
,
$
\lor
$
, and
$
\Ra
$
.
\paragraph
{
Metavariable conventions.
}
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
\[
...
...
@@ -292,7 +294,6 @@ Axioms $\prop \Ra \propB$ stand for judgments $\vctx \mid \cdot \proves \prop \R
\judgment
{}{
\vctx
\mid
\pfctx
\proves
\prop
}
\paragraph
{
Laws of intuitionistic higher-order logic.
}
This is entirely standard.
\begin{mathparpagebreakable}
\infer
[Asm]
{
\prop
\in
\pfctx
}
...
...
@@ -384,18 +385,17 @@ This is entirely standard.
(
\prop
*
\propB
) *
\propC
&
\Lra
&
\prop
* (
\propB
*
\propC
)
\end{array}
\and
\infer
\infer
[$*$-mono]
{
\prop
_
1
\proves
\propB
_
1
\and
\prop
_
2
\proves
\propB
_
2
}
{
\prop
_
1 *
\prop
_
2
\proves
\propB
_
1 *
\propB
_
2
}
\and
\inferB
\inferB
[$\wand$I-E]
{
\prop
*
\propB
\proves
\propC
}
{
\prop
\proves
\propB
\wand
\propC
}
\end{mathpar}
\paragraph
{
Laws for ghosts and physical resources.
}
\begin{mathpar}
\begin{array}
{
rMcMl
}
\ownGGhost
{
\melt
}
*
\ownGGhost
{
\meltB
}
&
\Lra
&
\ownGGhost
{
\melt
\mtimes
\meltB
}
\\
...
...
@@ -409,60 +409,59 @@ This is entirely standard.
\end{mathpar}
\paragraph
{
Laws for the later modality.
}
~
\\\ralf
{
Go on checking below.
}
\begin{mathpar}
\infer
H
{
M
ono
}
\infer
[$\later$-m
ono
]
{
\pfctx
\proves
\prop
}
{
\pfctx
\proves
\later
{
\prop
}}
\and
\infer
href
{
L
{
\"
o
}
b
}{
Loeb
}
{
\pfctx
,
\later
{
\prop
}
\proves
\prop
}
{
\pfctx
\proves
\prop
}
\infer
[
L{\"o}b
]
{}
{
(
\later\prop\Ra\prop
)
\proves
\prop
}
\and
\begin{array}
[b]
{
rMcMl
}
\later
{
\always
{
\prop
}}
&
\Lra
&
\always
{
\later
{
\prop
}}
\\
\infer
[$\later$-$\exists$]
{
\text
{$
\type
$
is inhabited
}}
{
\later
{
\Exists
x:
\type
.
\prop
}
\proves
\Exists
x:
\type
.
\later\prop
}
\\\\
\begin{array}
[c]
{
rMcMl
}
\later
{
(
\prop
\wedge
\propB
)
}
&
\Lra
&
\later
{
\prop
}
\wedge
\later
{
\propB
}
\\
\later
{
(
\prop
\vee
\propB
)
}
&
\Lra
&
\later
{
\prop
}
\vee
\later
{
\propB
}
\\
\end{array}
\and
\begin{array}
[
b
]
{
rMcMl
}
\begin{array}
[
c
]
{
rMcMl
}
\later
{
\All
x.
\prop
}
&
\Lra
&
\All
x.
\later\prop
\\
\later
{
\Exists
x.
\prop
}
&
\
Lr
a
&
\Exists
x.
\later
\prop
\\
\Exists
x.
\later
\prop
&
\
R
a
&
\later
{
\Exists
x.
\prop
}
\\
\later
{
(
\prop
*
\propB
)
}
&
\Lra
&
\later\prop
*
\later\propB
\end{array}
\end{mathpar}
\paragraph
{
Laws for the always modality.
}
\begin{mathpar}
\axiomH
{
Necessity
}
{
\always
{
\prop
}
\Ra
\prop
}
\and
\inferhref
{$
\always
$
I
}{
AlwaysIntro
}
\infer
[$\always$I]
{
\always
{
\pfctx
}
\proves
\prop
}
{
\always
{
\pfctx
}
\proves
\always
{
\prop
}}
\and
\begin{array}
[b]
{
rMcMl
}
\always
(
\term
=
_
\type
\termB
)
&
\Lra
&
\term
=
_
\type
\termB
\\
\always
{
\prop
}
*
\propB
&
\Lra
&
\always
{
\prop
}
\land
\propB
\\
\always
{
(
\prop
\Ra
\propB
)
}
&
\Ra
&
\always
{
\prop
}
\Ra
\always
{
\propB
}
\\
\infer
[$\always$E]
{}
{
\always
{
\prop
}
\Ra
\prop
}
\and
\begin{array}
[c]
{
rMcMl
}
\always
{
(
\prop
*
\propB
)
}
&
\Ra
&
\always
{
(
\prop
\land
\propB
)
}
\\
\always
{
\prop
}
*
\propB
&
\Ra
&
\always
{
\prop
}
\land
\propB
\\
\always
{
\later\prop
}
&
\Lra
&
\later\always
{
\prop
}
\\
\end{array}
\and
\begin{array}
[
b
]
{
rMcMl
}
\begin{array}
[
c
]
{
rMcMl
}
\always
{
(
\prop
\land
\propB
)
}
&
\Lra
&
\always
{
\prop
}
\land
\always
{
\propB
}
\\
\always
{
(
\prop
\lor
\propB
)
}
&
\Lra
&
\always
{
\prop
}
\lor
\always
{
\propB
}
\\
\always
{
\All
x.
\prop
}
&
\Lra
&
\All
x.
\always
{
\prop
}
\\
\always
{
\Exists
x.
\prop
}
&
\Lra
&
\Exists
x.
\always
{
\prop
}
\\
\end{array}
\end{mathpar}
Note that
$
\always
$
binds more tightly than
$
*
$
,
$
\land
$
,
$
\lor
$
, and
$
\Ra
$
.
\paragraph
{
Laws of primitive view shifts.
}
~
\\\ralf
{
Add these.
}
\paragraph
{
Laws of weakest preconditions.
}
~
\\\ralf
{
Add these.
}
%%% Local Variables:
%%% mode: latex
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment