Given some set $T$ and an indexed family $({\nequiv{n}}\subseteqT\timesT)_{n \in\mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N}\toT$ such that $\All n, m. n \leq m \Ra c (m)\nequiv{n} c (n)$.
Given some set $\cofe$ and an indexed family $({\nequiv{n}}\subseteq\cofe\times\cofe)_{n \in\mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N}\to\cofe$ such that $\All n, m. n \leq m \Ra c (m)\nequiv{n} c (n)$.
\end{defn}
\begin{defn}
A \emph{complete ordered family of equivalences} (COFE) is a tuple $(T, ({\nequiv{n}}\subseteqT\timesT)_{n \in\mathbb{N}}, \lim : \chain(T)\toT)$ satisfying
A \emph{complete ordered family of equivalences} (COFE) is a tuple $(\cofe, ({\nequiv{n}}\subseteq\cofe\times\cofe)_{n \in\mathbb{N}}, \lim : \chain(\cofe)\to\cofe)$ satisfying
\begin{align*}
\All n. (\nequiv{n}) ~&\text{is an equivalence relation}\tagH{cofe-equiv}\\
\All n, m.& n \geq m \Ra (\nequiv{n}) \subseteq (\nequiv{m}) \tagH{cofe-mono}\\
...
...
@@ -19,16 +19,16 @@
\ralf{Copy the explanation from the paper, when that one is more polished.}
\begin{defn}
An element $x \inA$ of a COFE is called \emph{discrete} if
\[\All y \inA. x \nequiv{0} y \Ra x = y\]
An element $x \in\cofe$ of a COFE is called \emph{discrete} if
\[\All y \in\cofe. x \nequiv{0} y \Ra x = y\]
A COFE $A$ is called \emph{discrete} if all its elements are discrete.
\end{defn}
\begin{defn}
A function $f : A \toB$ between two COFEs is \emph{non-expansive} if
\[\All n, x \inA, y \inA. x \nequiv{n} y \Ra f(x)\nequiv{n} f(y)\]
A function $f : \cofe\to\cofeB$ between two COFEs is \emph{non-expansive} if
\[\All n, x \in\cofe, y \in\cofe. x \nequiv{n} y \Ra f(x)\nequiv{n} f(y)\]
It is \emph{contractive} if
\[\All n, x \inA, y \inA. (\All m < n. x \nequiv{m} y)\Ra f(x)\nequiv{n} f(x)\]
\[\All n, x \in\cofe, y \in\cofe. (\All m < n. x \nequiv{m} y)\Ra f(x)\nequiv{n} f(x)\]
\end{defn}
\begin{defn}
...
...
@@ -135,20 +135,20 @@ Note that for RAs, this and the RA-based definition of a frame-preserving update
\item$\val$ ignores the step-index: \\
$\All\melt\in\monoid. \melt\in\mval_0\Ra\All n, \melt\in\mval_n$