Skip to content
Snippets Groups Projects
Commit 7a5e6ea4 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Make some arguments explicit that could not be infered.

parent 28344922
No related branches found
No related tags found
No related merge requests found
......@@ -254,21 +254,21 @@ Proof. rewrite Forall_forall. by setoid_rewrite elem_of_elements. Qed.
Lemma set_Exists_elements P X : set_Exists P X Exists P (elements X).
Proof. rewrite Exists_exists. by setoid_rewrite elem_of_elements. Qed.
Lemma set_Forall_Exists_dec {P Q : A Prop} (dec : x, {P x} + {Q x}) X :
Lemma set_Forall_Exists_dec (P Q : A Prop) (dec : x, {P x} + {Q x}) X :
{set_Forall P X} + {set_Exists Q X}.
Proof.
refine (cast_if (Forall_Exists_dec dec (elements X)));
refine (cast_if (Forall_Exists_dec P Q dec (elements X)));
[by apply set_Forall_elements|by apply set_Exists_elements].
Defined.
Lemma not_set_Forall_Exists P `{dec : x, Decision (P x)} X :
¬set_Forall P X set_Exists (not P) X.
Proof. intro. by destruct (set_Forall_Exists_dec dec X). Qed.
Proof. intro. by destruct (set_Forall_Exists_dec P (not P) dec X). Qed.
Lemma not_set_Exists_Forall P `{dec : x, Decision (P x)} X :
¬set_Exists P X set_Forall (not P) X.
Proof.
by destruct (@set_Forall_Exists_dec
(not P) _ (λ x, swap_if (decide (P x))) X).
by destruct (set_Forall_Exists_dec
(not P) P (λ x, swap_if (decide (P x))) X).
Qed.
Global Instance set_Forall_dec (P : A Prop) `{ x, Decision (P x)} X :
......
......@@ -2051,7 +2051,7 @@ Lemma list_subseteq_nil l : [] ⊆ l.
Proof. intros x. by rewrite elem_of_nil. Qed.
(** ** Properties of the [Forall] and [Exists] predicate *)
Lemma Forall_Exists_dec {P Q : A Prop} (dec : x, {P x} + {Q x}) :
Lemma Forall_Exists_dec (P Q : A Prop) (dec : x, {P x} + {Q x}) :
l, {Forall P l} + {Exists Q l}.
Proof.
refine (
......@@ -2232,21 +2232,19 @@ Section Forall_Exists.
Context {dec : x, Decision (P x)}.
Lemma not_Forall_Exists l : ¬Forall P l Exists (not P) l.
Proof. intro. destruct (Forall_Exists_dec dec l); intuition. Qed.
Proof. intro. by destruct (Forall_Exists_dec P (not P) dec l). Qed.
Lemma not_Exists_Forall l : ¬Exists P l Forall (not P) l.
Proof.
(* TODO: Coq 8.6 needs type annotation here, Coq 8.5 did not.
Should we report this? *)
by destruct (@Forall_Exists_dec (not P) _
by destruct (Forall_Exists_dec (not P) P
(λ x : A, swap_if (decide (P x))) l).
Qed.
Global Instance Forall_dec l : Decision (Forall P l) :=
match Forall_Exists_dec dec l with
match Forall_Exists_dec P (not P) dec l with
| left H => left H
| right H => right (Exists_not_Forall _ H)
end.
Global Instance Exists_dec l : Decision (Exists P l) :=
match Forall_Exists_dec (λ x, swap_if (decide (P x))) l with
match Forall_Exists_dec (not P) P (λ x, swap_if (decide (P x))) l with
| left H => right (Forall_not_Exists _ H)
| right H => left H
end.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment