Newer
Older
Robbert Krebbers
committed
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
Require Import Permutation.
Require Export base decidable option numbers.
Arguments length {_} _.
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
Notation Forall_nil_2 := Forall_nil.
Notation Forall_cons_2 := Forall_cons.
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.
Robbert Krebbers
committed
(** * General definitions *)
(** Looking up, updating, and deleting elements of a list. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
fix go (i : nat) (l : list A) {struct l} : option A :=
match l with
| [] => None
| x :: l =>
match i with
| 0 => Some x
Instance list_alter {A} (f : A → A) : AlterD nat A (list A) f :=
fix go (i : nat) (l : list A) {struct l} :=
match l with
| [] => []
| x :: l =>
match i with
| 0 => f x :: l
Instance list_delete {A} : Delete nat (list A) :=
fix go (i : nat) (l : list A) {struct l} : list A :=
match l with
| [] => []
| x :: l =>
match i with
| 0 => l
Robbert Krebbers
committed
end.
Instance list_insert {A} : Insert nat A (list A) := λ i x,
Robbert Krebbers
committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
(** The function [option_list] converts an element of the option type into
a list. *)
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
fix go P _ l :=
match l with
| [] => []
| x :: l =>
if decide (P x)
then x :: @filter _ _ (@go) _ _ l
else @filter _ _ (@go) _ _ l
end.
(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
match n with
| 0 => []
| S n => x :: replicate n x
end.
(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
match l with
| [] => replicate n y
| x :: l =>
match n with
| 0 => []
| S n => x :: resize n y l
end
end.
Arguments resize {_} !_ _ !_.
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
Definition suffix_of {A} (l1 l2 : list A) : Prop := ∃ k, l2 = k ++ l1.
Definition prefix_of {A} (l1 l2 : list A) : Prop := ∃ k, l2 = l1 ++ k.
Definition max_prefix_of `{∀ x y : A, Decision (x = y)} :
list A → list A → list A * list A * list A :=
fix go l1 l2 :=
match l1, l2 with
| [], l2 => ([], l2, [])
| l1, [] => (l1, [], [])
| x1 :: l1, x2 :: l2 =>
if decide_rel (=) x1 x2
then snd_map (x1 ::) (go l1 l2)
else (x1 :: l1, x2 :: l2, [])
end.
Definition max_suffix_of `{∀ x y : A, Decision (x = y)} (l1 l2 : list A) :
list A * list A * list A :=
match max_prefix_of (reverse l1) (reverse l2) with
| (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
end.
(** * Tactics on lists *)
Lemma cons_inv {A} (l1 l2 : list A) x1 x2 :
x1 :: l1 = x2 :: l2 → x1 = x2 ∧ l1 = l2.
Proof. by injection 1. Qed.
(** The tactic [discriminate_list_equality] discharges goals containing
invalid list equalities as an assumption. *)
Tactic Notation "discriminate_list_equality" hyp(H) :=
apply (f_equal length) in H;
repeat (simpl in H || rewrite app_length in H);
Tactic Notation "discriminate_list_equality" :=
solve [repeat_on_hyps (fun H => discriminate_list_equality H)].
(** The tactic [simplify_list_equality] simplifies assumptions involving
equalities on lists. *)
Ltac simplify_list_equality := repeat
match goal with
| H : _ :: _ = _ :: _ |- _ =>
apply cons_inv in H; destruct H
(* to circumvent bug #2939 in some situations *)
| H : _ ++ _ = _ ++ _ |- _ => first
[ apply app_inj_tail in H; destruct H
| apply app_inv_head in H
| apply app_inv_tail in H ]
| H : [?x] !! ?i = Some ?y |- _ =>
destruct i; [change (Some x = Some y) in H|discriminate]
| _ => progress simplify_equality
| H : _ |- _ => discriminate_list_equality H
end.
Robbert Krebbers
committed
(** * General theorems *)
Section general_properties.
Global Instance: ∀ x : A, Injective (=) (=) (x ::).
Proof. by injection 1. Qed.
Global Instance: ∀ l : list A, Injective (=) (=) (:: l).
Proof. by injection 1. Qed.
Global Instance: ∀ k : list A, Injective (=) (=) (k ++).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance: ∀ k : list A, Injective (=) (=) (++ k).
Proof. intros ???. apply app_inv_tail. Qed.
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
Lemma app_inj (l1 k1 l2 k2 : list A) :
length l1 = length k1 →
l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma list_eq (l1 l2 : list A) : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
Proof.
revert l2. induction l1; intros [|??] H.
* discriminate (H 0).
* discriminate (H 0).
* f_equal; [by injection (H 0) |].
apply IHl1. intro. apply (H (S _)).
Lemma list_eq_nil (l : list A) : (∀ i, l !! i = None) → l = nil.
Proof. intros. by apply list_eq. Qed.
Global Instance list_eq_dec {dec : ∀ x y : A, Decision (x = y)} : ∀ l k,
Decision (l = k) := list_eq_dec dec.
Definition list_singleton_dec (l : list A) : { x | l = [x] } + { length l ≠ 1 }.
Proof.
by refine (
match l with
| [x] => inleft (x ↾ _)
| _ => inright _
end).
Defined.
Lemma nil_or_length_pos (l : list A) : l = [] ∨ length l ≠ 0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length (l : list A) : length l = 0 → l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_tail (l : list A) i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_length (l : list A) i :
is_Some (l !! i) ↔ i < length l.
revert i. induction l.
* split; by inversion 1.
* intros [|?]; simpl.
+ split; eauto with arith.
+ by rewrite <-NPeano.Nat.succ_lt_mono.
Lemma lookup_lt_length_1 (l : list A) i :
is_Some (l !! i) → i < length l.
Proof. apply lookup_lt_length. Qed.
Lemma lookup_lt_length_alt (l : list A) i x :
l !! i = Some x → i < length l.
Proof. intros Hl. by rewrite <-lookup_lt_length, Hl. Qed.
Lemma lookup_lt_length_2 (l : list A) i :
i < length l → is_Some (l !! i).
Proof. apply lookup_lt_length. Qed.
Lemma lookup_ge_length (l : list A) i :
l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_length. lia. Qed.
Lemma lookup_ge_length_1 (l : list A) i :
l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_length. Qed.
Lemma lookup_ge_length_2 (l : list A) i :
length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_length. Qed.
Lemma list_eq_length_eq (l1 l2 : list A) :
length l2 = length l1 →
(∀ i x y, l1 !! i = Some x → l2 !! i = Some y → x = y) →
l1 = l2.
Proof.
intros Hlength Hlookup. apply list_eq. intros i.
destruct (l2 !! i) as [x|] eqn:E.
* feed inversion (lookup_lt_length_2 l1 i) as [y].
{ pose proof (lookup_lt_length_alt l2 i x E). lia. }
f_equal. eauto.
* rewrite lookup_ge_length in E |- *. lia.
Qed.
Lemma lookup_app_l (l1 l2 : list A) i :
i < length l1 →
(l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some (l1 l2 : list A) i x :
l1 !! i = Some x →
(l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_length_alt. Qed.
Lemma lookup_app_r (l1 l2 : list A) i :
(l1 ++ l2) !! (length l1 + i) = l2 !! i.
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
revert i.
induction l1; intros [|i]; simpl in *; simplify_equality; auto.
Qed.
Lemma lookup_app_r_alt (l1 l2 : list A) i :
length l1 ≤ i →
(l1 ++ l2) !! i = l2 !! (i - length l1).
Proof.
intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
rewrite Hi at 1. by apply lookup_app_r.
Qed.
Lemma lookup_app_r_Some (l1 l2 : list A) i x :
l2 !! i = Some x →
(l1 ++ l2) !! (length l1 + i) = Some x.
Proof. by rewrite lookup_app_r. Qed.
Lemma lookup_app_r_Some_alt (l1 l2 : list A) i x :
length l1 ≤ i →
l2 !! (i - length l1) = Some x →
(l1 ++ l2) !! i = Some x.
Proof. intro. by rewrite lookup_app_r_alt. Qed.
Lemma lookup_app_inv (l1 l2 : list A) i x :
(l1 ++ l2) !! i = Some x →
l1 !! i = Some x ∨ l2 !! (i - length l1) = Some x.
Proof.
revert i.
induction l1; intros [|i] ?; simpl in *; simplify_equality; auto.
Lemma list_lookup_middle (l1 l2 : list A) (x : A) :
(l1 ++ x :: l2) !! length l1 = Some x.
Proof. by induction l1; simpl. Qed.
Lemma alter_length (f : A → A) l i :
length (alter f i l) = length l.
Proof. revert i. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma insert_length (l : list A) i x :
length (<[i:=x]>l) = length l.
Proof. apply alter_length. Qed.
Lemma list_lookup_alter (f : A → A) l i :
alter f i l !! i = f <$> l !! i.
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Lemma list_lookup_alter_ne (f : A → A) l i j :
i ≠ j → alter f i l !! j = l !! j.
Proof.
revert i j. induction l; [done|].
intros [|i] [|j] ?; try done. apply (IHl i). congruence.
Qed.
Lemma list_lookup_insert (l : list A) i x :
i < length l →
<[i:=x]>l !! i = Some x.
Proof.
intros Hi. unfold insert, list_insert.
rewrite list_lookup_alter.
by feed inversion (lookup_lt_length_2 l i).
Qed.
Lemma list_lookup_insert_ne (l : list A) i j x :
i ≠ j → <[i:=x]>l !! j = l !! j.
Proof. apply list_lookup_alter_ne. Qed.
Lemma list_lookup_other (l : list A) i x :
length l ≠ 1 →
l !! i = Some x →
∃ j y, j ≠ i ∧ l !! j = Some y.
Proof.
intros Hl Hi.
destruct i; destruct l as [|x0 [|x1 l]]; simpl in *; simplify_equality.
* by exists 1 x1.
* by exists 0 x0.
Qed.
Lemma alter_app_l (f : A → A) (l1 l2 : list A) i :
i < length l1 →
alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof.
revert i.
induction l1; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma alter_app_r (f : A → A) (l1 l2 : list A) i :
alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof.
revert i.
induction l1; intros [|?]; simpl in *; f_equal; auto.
Qed.
Lemma alter_app_r_alt (f : A → A) (l1 l2 : list A) i :
length l1 ≤ i →
alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma insert_app_l (l1 l2 : list A) i x :
i < length l1 →
<[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. apply alter_app_l. Qed.
Lemma insert_app_r (l1 l2 : list A) i x :
<[length l1 + i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. apply alter_app_r. Qed.
Lemma insert_app_r_alt (l1 l2 : list A) i x :
length l1 ≤ i →
<[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof. apply alter_app_r_alt. Qed.
Lemma insert_consecutive_length (l : list A) i k :
length (insert_consecutive i k l) = length l.
Proof. revert i. by induction k; intros; simpl; rewrite ?insert_length. Qed.
Robbert Krebbers
committed
Lemma not_elem_of_nil (x : A) : x ∉ [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil (x : A) : x ∈ [] ↔ False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv (l : list A) : (∀ x, x ∉ l) → l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Proof.
split.
* inversion 1; subst. by left. by right.
* intros [?|?]; subst. by left. by right.
Lemma not_elem_of_cons (l : list A) x y :
x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app (l1 l2 : list A) x :
induction l1.
* split; [by right|]. intros [Hx|]; [|done].
by destruct (elem_of_nil x).
* simpl. rewrite !elem_of_cons, IHl1. tauto.
Lemma not_elem_of_app (l1 l2 : list A) x :
x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton (x y : A) : x ∈ [y] ↔ x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Global Instance elem_of_list_permutation_proper (x : A) :
Proper (Permutation ==> iff) (x ∈).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
Proof.
induction 1 as [x l|x y l ? [l1 [l2 ?]]].
* by eexists [], l.
* subst. by exists (y :: l1) l2.
Qed.
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
Global Instance elem_of_list_dec {dec : ∀ x y : A, Decision (x = y)} :
∀ (x : A) l, Decision (x ∈ l).
Proof.
intros x. refine (
fix go l :=
match l return Decision (x ∈ l) with
| [] => right (not_elem_of_nil _)
| y :: l => cast_if_or (decide_rel (=) x y) (go l)
end); clear go dec; subst; try (by constructor); by inversion 1.
Defined.
Lemma elem_of_list_lookup_1 (l : list A) x :
x ∈ l → ∃ i, l !! i = Some x.
Proof.
induction 1 as [|???? IH].
* by exists 0.
* destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 (l : list A) i x :
l !! i = Some x → x ∈ l.
Proof.
revert i. induction l; intros [|i] ?;
simpl; simplify_equality; constructor; eauto.
Qed.
Lemma elem_of_list_lookup (l : list A) x :
x ∈ l ↔ ∃ i, l !! i = Some x.
Robbert Krebbers
committed
Proof.
firstorder eauto using
elem_of_list_lookup_1, elem_of_list_lookup_2.
Robbert Krebbers
committed
Qed.
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
Lemma NoDup_cons (x : A) l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 (x : A) l : NoDup (x :: l) → x ∉ l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 (x : A) l : NoDup (x :: l) → NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
induction l; simpl.
* rewrite NoDup_nil.
setoid_rewrite elem_of_nil. naive_solver.
* rewrite !NoDup_cons.
setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app.
naive_solver.
Proper (Permutation ==> iff) (@NoDup A).
Proof.
induction 1 as [|x l k Hlk IH | |].
* by rewrite !NoDup_nil.
* by rewrite !NoDup_cons, IH, Hlk.
* rewrite !NoDup_cons, !elem_of_cons. intuition.
* intuition.
Qed.
Lemma NoDup_Permutation (l k : list A) :
NoDup l → NoDup k → (∀ x, x ∈ l ↔ x ∈ k) → Permutation l k.
Proof.
intros Hl. revert k. induction Hl as [|x l Hin ? IH].
* intros k _ Hk.
rewrite (elem_of_nil_inv k); [done |].
intros x. rewrite <-Hk, elem_of_nil. intros [].
* intros k Hk Hlk.
destruct (elem_of_list_split k x) as [l1 [l2 ?]]; subst.
{ rewrite <-Hlk. by constructor. }
rewrite <-Permutation_middle, NoDup_cons in Hk.
destruct Hk as [??].
apply Permutation_cons_app, IH; [done |].
intros y. specialize (Hlk y).
rewrite <-Permutation_middle, !elem_of_cons in Hlk.
naive_solver.
Qed.
Global Instance NoDup_dec {dec : ∀ x y : A, Decision (x = y)} :
∀ (l : list A), Decision (NoDup l) :=
fix NoDup_dec l :=
match l return Decision (NoDup l) with
match decide_rel (∈) x l with
| left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
| left H => left (NoDup_cons_2 _ _ Hin H)
| right H => right (H ∘ NoDup_cons_12 _ _)
Section remove_dups.
Context `{!∀ x y : A, Decision (x = y)}.
Fixpoint remove_dups (l : list A) : list A :=
match l with
| [] => []
| x :: l =>
if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
end.
Lemma elem_of_remove_dups l x :
x ∈ remove_dups l ↔ x ∈ l.
Proof.
split; induction l; simpl; repeat case_decide;
rewrite ?elem_of_cons; intuition (simplify_equality; auto).
Qed.
Lemma remove_dups_nodup l : NoDup (remove_dups l).
Proof.
induction l; simpl; repeat case_decide; try constructor; auto.
by rewrite elem_of_remove_dups.
Qed.
End remove_dups.
Lemma elem_of_list_filter `{∀ x : A, Decision (P x)} l x :
x ∈ filter P l ↔ P x ∧ x ∈ l.
Proof.
unfold filter. induction l; simpl; repeat case_decide;
rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
Qed.
Lemma filter_nodup P `{∀ x : A, Decision (P x)} l :
NoDup l → NoDup (filter P l).
Proof.
unfold filter. induction 1; simpl; repeat case_decide;
rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
Lemma reverse_singleton (x : A) : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons (l : list A) x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc (l : list A) x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app (l1 l2 : list A) :
reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length (l : list A) : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive (l : list A) : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
Lemma take_nil n :
take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app (l k : list A) :
take (length l) (l ++ k) = l.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma take_app_alt (l k : list A) n :
n = length l →
take n (l ++ k) = l.
Proof. intros Hn. by rewrite Hn, take_app. Qed.
Lemma take_app_le (l k : list A) n :
n ≤ length l →
take n (l ++ k) = take n l.
Proof.
revert n;
induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_app_ge (l k : list A) n :
length l ≤ n →
take n (l ++ k) = l ++ take (n - length l) k.
Proof.
revert n;
induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_ge (l : list A) n :
length l ≤ n →
take n l = l.
Proof.
revert n.
induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_take (l : list A) n m :
take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; simpl; f_equal; auto. Qed.
Lemma take_idempotent (l : list A) n :
take n (take n l) = take n l.
Proof. by rewrite take_take, Min.min_idempotent. Qed.
Lemma take_length (l : list A) n :
length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; simpl; f_equal; done. Qed.
Lemma take_length_alt (l : list A) n :
n ≤ length l →
length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.
Lemma lookup_take (l : list A) n i :
i < n → take n l !! i = l !! i.
Proof.
revert n i. induction l; intros [|n] i ?; trivial.
* auto with lia.
* destruct i; simpl; auto with arith.
Qed.
Lemma lookup_take_ge (l : list A) n i :
n ≤ i → take n l !! i = None.
Proof.
revert n i.
induction l; intros [|?] [|?] ?; simpl; auto with lia.
Qed.
Lemma take_alter (f : A → A) l n i :
n ≤ i → take n (alter f i l) = take n l.
Proof.
intros. apply list_eq. intros j. destruct (le_lt_dec n j).
* by rewrite !lookup_take_ge.
* by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert (l : list A) n i x :
n ≤ i → take n (<[i:=x]>l) = take n l.
Proof take_alter _ _ _ _.
Lemma drop_nil n :
drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_app (l k : list A) :
drop (length l) (l ++ k) = k.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma drop_app_alt (l k : list A) n :
n = length l →
drop n (l ++ k) = k.
Proof. intros Hn. by rewrite Hn, drop_app. Qed.
Lemma drop_length (l : list A) n :
length (drop n l) = length l - n.
Proof.
revert n. by induction l; intros [|i]; simpl; f_equal.
Qed.
Lemma drop_all (l : list A) :
drop (length l) l = [].
Proof. induction l; simpl; auto. Qed.
Lemma drop_all_alt (l : list A) n :
n = length l →
drop n l = [].
Proof. intros. subst. by rewrite drop_all. Qed.
Lemma lookup_drop (l : list A) n i :
drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter (f : A → A) l n i :
i < n → drop n (alter f i l) = drop n l.
Proof.
intros. apply list_eq. intros j.
by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert (l : list A) n i x :
i < n → drop n (<[i:=x]>l) = drop n l.
Proof drop_alter _ _ _ _.
Lemma replicate_length n (x : A) : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n (x : A) i :
i < n →
replicate n x !! i = Some x.
revert i.
induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma lookup_replicate_inv n (x y : A) i :
replicate n x !! i = Some y → y = x ∧ i < n.
Proof.
revert i.
induction n; intros [|?]; naive_solver auto with lia.
Qed.
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
Lemma replicate_plus n m (x : A) :
replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; simpl; f_equal; auto. Qed.
Lemma take_replicate n m (x : A) :
take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma take_replicate_plus n m (x : A) :
take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m (x : A) :
drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma drop_replicate_plus n m (x : A) :
drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma resize_spec (l : list A) n x :
resize n x l = take n l ++ replicate (n - length l) x.
Proof.
revert n.
induction l; intros [|?]; simpl; f_equal; auto.
Qed.
Lemma resize_0 (l : list A) x :
resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n (x : A) :
resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. simpl. f_equal. lia. Qed.
Lemma resize_ge (l : list A) n x :
length l ≤ n →
resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le (l : list A) n x :
n ≤ length l →
resize n x l = take n l.
Proof.
intros. rewrite resize_spec, (proj2 (NPeano.Nat.sub_0_le _ _)) by done.
simpl. by rewrite (right_id [] (++)).
Qed.
Lemma resize_all (l : list A) x :
resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt (l : list A) n x :
n = length l →
resize n x l = l.
Proof. intros. subst. by rewrite resize_all. Qed.
Lemma resize_plus (l : list A) n m x :
resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
revert n m.
induction l; intros [|?] [|?]; simpl; f_equal; auto.
* by rewrite plus_0_r, (right_id [] (++)).
* by rewrite replicate_plus.
Qed.
Lemma resize_plus_eq (l : list A) n m x :
length l = n →
resize (n + m) x l = l ++ replicate m x.
Proof.
intros. subst.
by rewrite resize_plus, resize_all, drop_all, resize_nil.
Qed.
Lemma resize_app_le (l1 l2 : list A) n x :
n ≤ length l1 →
resize n x (l1 ++ l2) = resize n x l1.
Proof.
intros.
by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app_ge (l1 l2 : list A) n x :
length l1 ≤ n →
resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
intros.
rewrite !resize_spec, take_app_ge, (associative (++)) by done.
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
do 2 f_equal. rewrite app_length. lia.
Qed.
Lemma resize_length (l : list A) n x : length (resize n x l) = n.
Proof.
rewrite resize_spec, app_length, replicate_length, take_length. lia.
Qed.
Lemma resize_replicate (x : A) n m :
resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; simpl; f_equal; auto. Qed.
Lemma resize_resize (l : list A) n m x :
n ≤ m →
resize n x (resize m x l) = resize n x l.
Proof.
revert n m. induction l; simpl.
* intros. by rewrite !resize_nil, resize_replicate.
* intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_idempotent (l : list A) n x :
resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le (l : list A) n m x :
n ≤ m →
resize n x (take m l) = resize n x l.
Proof.
revert n m.
induction l; intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_take_eq (l : list A) n x :
resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize (l : list A) n m x :
take n (resize m x l) = resize (min n m) x l.
Proof.
revert n m.
induction l; intros [|?] [|?]; simpl; f_equal; auto using take_replicate.
Qed.
Lemma take_resize_le (l : list A) n m x :
n ≤ m →
take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq (l : list A) n x :
take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_length_resize (l : list A) n x :
length l ≤ n →
take (length l) (resize n x l) = l.
Proof. intros. by rewrite take_resize_le, resize_all. Qed.
Lemma take_length_resize_alt (l : list A) n m x :
m = length l →
m ≤ n →
take m (resize n x l) = l.
Proof. intros. subst. by apply take_length_resize. Qed.
Lemma take_resize_plus (l : list A) n m x :
take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le (l : list A) n m x :
n ≤ m →
drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
revert n m. induction l; simpl.
* intros. by rewrite drop_nil, !resize_nil, drop_replicate.
* intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_plus (l : list A) n m x :
drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Section Forall_Exists.
Context (P : A → Prop).
Lemma Forall_forall l :
Forall P l ↔ ∀ x, x ∈ l → P x.
Proof.
split.
* induction 1; inversion 1; subst; auto.
* intros Hin. induction l; constructor.
+ apply Hin. constructor.
+ apply IHl. intros ??. apply Hin. by constructor.
Qed.
Lemma Forall_nil : Forall P [] ↔ True.
Proof. done. Qed.
Lemma Forall_cons_1 x l : Forall P (x :: l) → P x ∧ Forall P l.
Proof. by inversion 1. Qed.
Lemma Forall_cons x l : Forall P (x :: l) ↔ P x ∧ Forall P l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma Forall_singleton x : Forall P [x] ↔ P x.
Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
Lemma Forall_app l1 l2 : Forall P (l1 ++ l2) ↔ Forall P l1 ∧ Forall P l2.
Proof.
split.
* induction l1; inversion 1; intuition.
* intros [H ?]. induction H; simpl; intuition.
Qed.
Lemma Forall_true l : (∀ x, P x) → Forall P l.
Proof. induction l; auto. Qed.
Lemma Forall_impl l (Q : A → Prop) :
Forall P l → (∀ x, P x → Q x) → Forall Q l.
Proof. intros H ?. induction H; auto. Defined.
Lemma Forall_delete l i : Forall P l → Forall P (delete i l).
Proof.
intros H. revert i.
by induction H; intros [|i]; try constructor.
Qed.
Lemma Forall_lookup l :
Forall P l ↔ ∀ i x, l !! i = Some x → P x.
Proof.
rewrite Forall_forall.
setoid_rewrite elem_of_list_lookup.
naive_solver.
Qed.
Lemma Forall_lookup_1 l i x :
Forall P l → l !! i = Some x → P x.
Proof. rewrite Forall_lookup. eauto. Qed.
Lemma Forall_alter f l i :
Forall P l →
(∀ x, l !! i = Some x → P x → P (f x)) →
Forall P (alter f i l).
Proof.
intros Hl. revert i.
induction Hl; simpl; intros [|i]; constructor; auto.
Qed.
Lemma Forall_replicate n x :
P x → Forall P (replicate n x).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Forall_replicate_eq n (x : A) :
Forall (=x) (replicate n x).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Exists_exists l :
Exists P l ↔ ∃ x, x ∈ l ∧ P x.
Proof.
split.
* induction 1 as [x|y ?? IH].
+ exists x. split. constructor. done.
+ destruct IH as [x [??]]. exists x. split. by constructor. done.
* intros [x [Hin ?]]. induction l.
+ by destruct (not_elem_of_nil x).
+ inversion Hin; subst. by left. right; auto.
Qed.
Lemma Exists_inv x l : Exists P (x :: l) → P x ∨ Exists P l.
Proof. inversion 1; intuition trivial. Qed.
Lemma Exists_app l1 l2 : Exists P (l1 ++ l2) ↔ Exists P l1 ∨ Exists P l2.
Proof.
split.
* induction l1; inversion 1; intuition.
* intros [H|H].
+ induction H; simpl; intuition.
+ induction l1; simpl; intuition.
Qed.
Lemma Exists_not_Forall l : Exists (not ∘ P) l → ¬Forall P l.
Proof. induction 1; inversion_clear 1; contradiction. Qed.
Lemma Forall_not_Exists l : Forall (not ∘ P) l → ¬Exists P l.
Proof. induction 1; inversion_clear 1; contradiction. Qed.
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
Context {dec : ∀ x, Decision (P x)}.
Fixpoint Forall_Exists_dec l : {Forall P l} + {Exists (not ∘ P) l}.
Proof.
refine (
match l with
| [] => left _
| x :: l => cast_if_and (dec x) (Forall_Exists_dec l)
end); clear Forall_Exists_dec; abstract intuition.
Defined.
Lemma not_Forall_Exists l : ¬Forall P l → Exists (not ∘ P) l.
Proof. intro. destruct (Forall_Exists_dec l); intuition. Qed.
Global Instance Forall_dec l : Decision (Forall P l) :=
match Forall_Exists_dec l with
| left H => left H
| right H => right (Exists_not_Forall _ H)
end.
Fixpoint Exists_Forall_dec l : {Exists P l} + {Forall (not ∘ P) l}.
Proof.
refine (
match l with
| [] => right _
| x :: l => cast_if_or (dec x) (Exists_Forall_dec l)
end); clear Exists_Forall_dec; abstract intuition.
Defined.
Lemma not_Exists_Forall l : ¬Exists P l → Forall (not ∘ P) l.
Proof. intro. destruct (Exists_Forall_dec l); intuition. Qed.
Global Instance Exists_dec l : Decision (Exists P l) :=
match Exists_Forall_dec l with
| left H => left H
| right H => right (Forall_not_Exists _ H)
end.
End Forall_Exists.
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Context {A B} (P : A → B → Prop).
Lemma Forall2_nil_inv_l k :
Forall2 P [] k → k = [].
Proof. by inversion 1. Qed.
Lemma Forall2_nil_inv_r k :
Forall2 P k [] → k = [].
Proof. by inversion 1. Qed.
Lemma Forall2_cons_inv l1 l2 x1 x2 :
Forall2 P (x1 :: l1) (x2 :: l2) → P x1 x2 ∧ Forall2 P l1 l2.
Proof. by inversion 1. Qed.
Lemma Forall2_cons_inv_l l1 k x1 :
Forall2 P (x1 :: l1) k → ∃ x2 l2,
P x1 x2 ∧ Forall2 P l1 l2 ∧ k = x2 :: l2.
Proof. inversion 1; subst; eauto. Qed.
Lemma Forall2_cons_inv_r k l2 x2 :
Forall2 P k (x2 :: l2) → ∃ x1 l1,
P x1 x2 ∧ Forall2 P l1 l2 ∧ k = x1 :: l1.
Proof. inversion 1; subst; eauto. Qed.
Lemma Forall2_cons_nil_inv l1 x1 :
Forall2 P (x1 :: l1) [] → False.
Proof. by inversion 1. Qed.
Lemma Forall2_nil_cons_inv l2 x2 :
Forall2 P [] (x2 :: l2) → False.
Proof. by inversion 1. Qed.